Powell M S, Bowlan P R, Son S F, Bolme C A, Brown K E, Moore D S, McGrane S D
Maurice J. Zucrow Laboratory, Mechanical Engineering Department, Purdue University, 500 Allison Rd., West Lafayette, Indiana 47907, USA.
Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Rev Sci Instrum. 2019 Jun;90(6):063001. doi: 10.1063/1.5092244.
Common Ti:sapphire chirped pulse amplified laser systems can be readily adapted to be both a generator of adjustable pressure shock waves and a source for multiple probes of the ensuing ultrafast shock dynamics. In this paper, we detail experimental considerations for optimizing the shock generation, interferometric characterization, and spectroscopic probing of shock dynamics with visible and mid-infrared transient absorption. While we have reported results using these techniques elsewhere, here we detail how the spectroscopies are integrated with the shock and interferometry experiment. The interferometric characterization uses information from beams at multiple polarizations and angles of incidence combined with thin film equations and shock dynamics to determine the shock velocity, particle velocity, and shocked refractive index. Visible transient absorption spectroscopy uses a white light supercontinuum in a reflection geometry, synchronized to the shock wave, to time resolve shock-induced changes in visible absorption such as changes to electronic structure or strongly absorbing products and intermediates due to reaction. Mid-infrared transient absorption spectroscopy uses two color filamentation supercontinuum generation combined with a simple thermal imaging microbolometer spectrometer to enable broadband single shot detection of changes in the vibrational spectra. These methods are demonstrated here in the study of shock dynamics at stresses from 5 to 30 GPa in organic materials and from a few GPa to >70 GPa in metals with spatial resolution of a few micrometers and temporal resolution of a few picoseconds. This experiment would be possible to replicate in any ultrafast laser laboratory containing a single bench top commercial chirped pulse amplification laser system.
常见的钛宝石啁啾脉冲放大激光系统可以很容易地被改造成既能产生可调压力冲击波,又能作为后续超快冲击动力学多次探测的光源。在本文中,我们详细介绍了优化冲击波产生、干涉表征以及利用可见和中红外瞬态吸收对冲击动力学进行光谱探测的实验考虑因素。虽然我们在其他地方已经报道了使用这些技术的结果,但在这里我们详细说明了光谱学是如何与冲击和干涉测量实验相结合的。干涉表征利用来自多个偏振和入射角的光束信息,结合薄膜方程和冲击动力学来确定冲击速度、粒子速度和冲击折射率。可见瞬态吸收光谱在反射几何结构中使用白光超连续谱,与冲击波同步,以时间分辨冲击引起的可见吸收变化,例如电子结构的变化或由于反应产生的强吸收产物和中间体。中红外瞬态吸收光谱使用双色丝状超连续谱产生结合简单的热成像微测辐射热计光谱仪,实现对振动光谱变化的宽带单次检测。这些方法在本文中用于研究有机材料中5至30吉帕压力下以及金属中几吉帕至大于70吉帕压力下的冲击动力学,空间分辨率为几微米,时间分辨率为几皮秒。在任何配备有台式商用啁啾脉冲放大激光系统的超快激光实验室中都可以重复进行这个实验。