Veysset David, Мaznev Alexei A, Pezeril Thomas, Kooi Steven, Nelson Keith A
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
Sci Rep. 2016 Dec 23;6(1):24. doi: 10.1038/s41598-016-0032-1.
Shock waves in condensed matter are of great importance for many areas of science and technology ranging from inertially confined fusion to planetary science and medicine. In laboratory studies of shock waves, there is a need in developing diagnostic techniques capable of measuring parameters of materials under shock with high spatial resolution. Here, time-resolved interferometric imaging is used to study laser-driven focusing shock waves in a thin liquid layer in an all-optical experiment. Shock waves are generated in a 10 µm-thick layer of water by focusing intense picosecond laser pulses into a ring of 95 µm radius. Using a Mach-Zehnder interferometer and time-delayed femtosecond laser pulses, we obtain a series of images tracing the shock wave as it converges at the center of the ring before reemerging as a diverging shock, resulting in the formation of a cavitation bubble. Through quantitative analysis of the interferograms, density profiles of shocked samples are extracted. The experimental geometry used in our study opens prospects for spatially resolved spectroscopic studies of materials under shock compression.
凝聚态物质中的冲击波在从惯性约束聚变到行星科学和医学等许多科学技术领域都具有重要意义。在冲击波的实验室研究中,需要开发能够在高空间分辨率下测量受冲击材料参数的诊断技术。在这里,时间分辨干涉成像被用于在全光学实验中研究薄液层中激光驱动的聚焦冲击波。通过将强皮秒激光脉冲聚焦到半径为95 µm的环中,在10 µm厚的水层中产生冲击波。使用马赫-曾德尔干涉仪和延时飞秒激光脉冲,我们获得了一系列图像,追踪冲击波在环中心汇聚然后作为发散冲击波重新出现的过程,从而形成空化气泡。通过对干涉图的定量分析,提取出受冲击样品的密度分布。我们研究中使用的实验几何结构为冲击压缩下材料的空间分辨光谱研究开辟了前景。