Sano Tomokazu, Matsuda Tomoki, Hirose Akio, Ohata Mitsuru, Terai Tomoyuki, Kakeshita Tomoyuki, Inubushi Yuichi, Sato Takahiro, Miyanishi Kohei, Yabashi Makina, Togashi Tadashi, Tono Kensuke, Sakata Osami, Tange Yoshinori, Arakawa Kazuto, Ito Yusuke, Okuchi Takuo, Sato Tomoko, Sekine Toshimori, Mashimo Tsutomu, Nakanii Nobuhiko, Seto Yusuke, Shigeta Masaya, Shobu Takahisa, Sano Yuji, Hosokai Tomonao, Matsuoka Takeshi, Yabuuchi Toshinori, Tanaka Kazuo A, Ozaki Norimasa, Kodama Ryosuke
Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
Sci Rep. 2023 Aug 31;13(1):13796. doi: 10.1038/s41598-023-40283-6.
Over the past century, understanding the nature of shock compression of condensed matter has been a major topic. About 20 years ago, a femtosecond laser emerged as a new shock-driver. Unlike conventional shock waves, a femtosecond laser-driven shock wave creates unique microstructures in materials. Therefore, the properties of this shock wave may be different from those of conventional shock waves. However, the lattice behaviour under femtosecond laser-driven shock compression has never been elucidated. Here we report the ultrafast lattice behaviour in iron shocked by direct irradiation of a femtosecond laser pulse, diagnosed using X-ray free electron laser diffraction. We found that the initial compression state caused by the femtosecond laser-driven shock wave is the same as that caused by conventional shock waves. We also found, for the first time experimentally, the temporal deviation of peaks of stress and strain waves predicted theoretically. Furthermore, the existence of a plastic wave peak between the stress and strain wave peaks is a new finding that has not been predicted even theoretically. Our findings will open up new avenues for designing novel materials that combine strength and toughness in a trade-off relationship.
在过去的一个世纪里,理解凝聚态物质的冲击压缩性质一直是一个主要课题。大约20年前,飞秒激光成为一种新型的冲击驱动源。与传统冲击波不同,飞秒激光驱动的冲击波会在材料中产生独特的微观结构。因此,这种冲击波的性质可能与传统冲击波不同。然而,飞秒激光驱动的冲击压缩下的晶格行为从未得到阐明。在此,我们报告了利用X射线自由电子激光衍射诊断的飞秒激光脉冲直接辐照冲击下铁的超快晶格行为。我们发现,飞秒激光驱动的冲击波引起的初始压缩状态与传统冲击波引起的相同。我们还首次通过实验发现了理论预测的应力波和应变波峰值的时间偏差。此外,在应力波和应变波峰值之间存在塑性波峰值是一个即使在理论上也未被预测到的新发现。我们的发现将为设计强度和韧性呈权衡关系的新型材料开辟新途径。