Suppr超能文献

开发用于预测脊髓硬膜外脓肿患者死亡率的机器学习算法。

Development of machine learning algorithms for prediction of mortality in spinal epidural abscess.

机构信息

Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.

Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.

出版信息

Spine J. 2019 Dec;19(12):1950-1959. doi: 10.1016/j.spinee.2019.06.024. Epub 2019 Jun 27.

Abstract

BACKGROUND CONTEXT

In-hospital and short-term mortality in patients with spinal epidural abscess (SEA) remains unacceptably high despite diagnostic and therapeutic advancements. Forecasting this potentially avoidable consequence at the time of admission could improve patient management and counseling. Few studies exist to meet this need, and none have explored methodologies such as machine learning.

PURPOSE

The purpose of this study was to develop machine learning algorithms for prediction of in-hospital and 90-day postdischarge mortality in SEA.

STUDY DESIGN/SETTING: Retrospective, case-control study at two academic medical centers and three community hospitals from 1993 to 2016.

PATIENTS SAMPLE

Adult patients with an inpatient admission for radiologically confirmed diagnosis of SEA.

OUTCOME MEASURES

In-hospital and 90-day postdischarge mortality.

METHODS

Five machine learning algorithms (elastic-net penalized logistic regression, random forest, stochastic gradient boosting, neural network, and support vector machine) were developed and assessed by discrimination, calibration, overall performance, and decision curve analysis.

RESULTS

Overall, 1,053 SEA patients were identified in the study, with 134 (12.7%) experiencing in-hospital or 90-day postdischarge mortality. The stochastic gradient boosting model achieved the best performance across discrimination, c-statistic=0.89, calibration, and decision curve analysis. The variables used for prediction of 90-day mortality, ranked by importance, were age, albumin, platelet count, neutrophil to lymphocyte ratio, hemodialysis, active malignancy, and diabetes. The final algorithm was incorporated into a web application available here: https://sorg-apps.shinyapps.io/seamortality/.

CONCLUSIONS

Machine learning algorithms show promise on internal validation for prediction of 90-day mortality in SEA. Future studies are needed to externally validate these algorithms in independent populations.

摘要

背景

尽管在诊断和治疗方面取得了进步,但脊髓硬膜外脓肿(SEA)患者的住院内和短期死亡率仍然高得令人无法接受。在入院时预测这种潜在可避免的后果,可以改善患者的管理和咨询。满足这一需求的研究很少,也没有研究过机器学习等方法。

目的

本研究旨在开发用于预测 SEA 住院内和 90 天出院后死亡率的机器学习算法。

研究设计/设置:这是一项回顾性病例对照研究,在两个学术医疗中心和三个社区医院进行,时间为 1993 年至 2016 年。

患者样本

因影像学确诊的 SEA 而住院的成年患者。

结局测量

住院内和 90 天出院后死亡率。

方法

开发了五种机器学习算法(弹性网惩罚逻辑回归、随机森林、随机梯度增强、神经网络和支持向量机),并通过判别、校准、整体性能和决策曲线分析进行评估。

结果

研究共纳入 1053 例 SEA 患者,其中 134 例(12.7%)发生住院内或 90 天出院后死亡。随机梯度增强模型在判别、c 统计量=0.89、校准和决策曲线分析方面表现最佳。用于预测 90 天死亡率的变量按重要性排序,依次为年龄、白蛋白、血小板计数、中性粒细胞与淋巴细胞比值、血液透析、活动性恶性肿瘤和糖尿病。最终算法被整合到一个网络应用程序中,可在此处访问:https://sorg-apps.shinyapps.io/seamortality/。

结论

机器学习算法在 SEA 90 天死亡率的内部验证中显示出良好的预测能力。需要进一步的研究来在独立人群中验证这些算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验