大数据研究中的隐私保护:联邦学习在脊柱外科中的作用。

Preserving privacy in big data research: the role of federated learning in spine surgery.

机构信息

Department of Orthopaedics, UC Davis Medical Center, Sacramento, CA, USA.

Ohio State College of Medicine, The Ohio State University, Columbus, OH, USA.

出版信息

Eur Spine J. 2024 Nov;33(11):4076-4081. doi: 10.1007/s00586-024-08172-2. Epub 2024 Feb 25.

Abstract

PURPOSE

Integrating machine learning models into electronic medical record systems can greatly enhance decision-making, patient outcomes, and value-based care in healthcare systems. Challenges related to data accessibility, privacy, and sharing can impede the development and deployment of effective predictive models in spine surgery. Federated learning (FL) offers a decentralized approach to machine learning that allows local model training while preserving data privacy, making it well-suited for healthcare settings. Our objective was to describe federated learning solutions for enhanced predictive modeling in spine surgery.

METHODS

The authors reviewed the literature.

RESULTS

FL has promising applications in spine surgery, including telesurgery, AI-based prediction models, and medical image segmentation. Implementing FL requires careful consideration of infrastructure, data quality, and standardization, but it holds the potential to revolutionize orthopedic surgery while ensuring patient privacy and data control.

CONCLUSIONS

Federated learning shows great promise in revolutionizing predictive modeling in spine surgery by addressing the challenges of data privacy, accessibility, and sharing. The applications of FL in telesurgery, AI-based predictive models, and medical image segmentation have demonstrated their potential to enhance patient outcomes and value-based care.

摘要

目的

将机器学习模型集成到电子病历系统中,可以极大地增强医疗系统中的决策、患者预后和基于价值的护理。与数据可及性、隐私和共享相关的挑战可能会阻碍脊柱外科中有效预测模型的开发和部署。联邦学习(FL)为机器学习提供了一种去中心化的方法,允许在保留数据隐私的同时进行本地模型训练,非常适合医疗保健环境。我们的目标是描述用于增强脊柱外科中预测建模的联邦学习解决方案。

方法

作者回顾了文献。

结果

FL 在脊柱外科中有很有前景的应用,包括远程手术、基于人工智能的预测模型和医学图像分割。实施 FL 需要仔细考虑基础设施、数据质量和标准化,但它有可能在确保患者隐私和数据控制的同时彻底改变骨科手术。

结论

FL 通过解决数据隐私、可及性和共享方面的挑战,在脊柱外科中实现预测建模的革命性变革方面显示出巨大的潜力。FL 在远程手术、基于人工智能的预测模型和医学图像分割中的应用已经证明了它们在提高患者预后和基于价值的护理方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索