Suppr超能文献

脊柱硬膜外脓肿院内及90天死亡率预测算法的外部验证

External validation of a predictive algorithm for in-hospital and 90-day mortality after spinal epidural abscess.

作者信息

Shah Akash A, Karhade Aditya V, Groot Olivier Q, Olson Thomas E, Schoenfeld Andrew J, Bono Christopher M, Harris Mitchel B, Ferrone Marco L, Nelson Sandra B, Park Don Y, Schwab Joseph H

机构信息

Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.

Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.

出版信息

Spine J. 2023 May;23(5):760-765. doi: 10.1016/j.spinee.2023.01.013. Epub 2023 Feb 1.

Abstract

BACKGROUND CONTEXT

Mortality in patients with spinal epidural abscess (SEA) remains high. Accurate prediction of patient-specific prognosis in SEA can improve patient counseling as well as guide management decisions. There are no externally validated studies predicting short-term mortality in patients with SEA.

PURPOSE

The purpose of this study was to externally validate the Skeletal Oncology Research Group (SORG) stochastic gradient boosting algorithm for prediction of in-hospital and 90-day postdischarge mortality in SEA.

STUDY DESIGN/SETTING: Retrospective, case-control study at a tertiary care academic medical center from 2003 to 2021.

PATIENT SAMPLE

Adult patients admitted for radiologically confirmed diagnosis of SEA who did not initiate treatment at an outside institution.

OUTCOME MEASURES

In-hospital and 90-day postdischarge mortality.

METHODS

We tested the SORG stochastic gradient boosting algorithm on an independent validation cohort. We assessed its performance with discrimination, calibration, decision curve analysis, and overall performance.

RESULTS

A total of 212 patients met inclusion criteria, with a short-term mortality rate of 10.4%. The area under the receiver operating characteristic curve (AUROC) of the SORG algorithm when tested on the full validation cohort was 0.82, the calibration intercept was -0.08, the calibration slope was 0.96, and the Brier score was 0.09.

CONCLUSIONS

With a contemporaneous and geographically distinct independent cohort, we report successful external validation of a machine learning algorithm for prediction of in-hospital and 90-day postdischarge mortality in SEA.

摘要

背景

脊柱硬膜外脓肿(SEA)患者的死亡率仍然很高。准确预测SEA患者的个体预后可以改善患者咨询并指导管理决策。目前尚无外部验证的研究来预测SEA患者的短期死亡率。

目的

本研究的目的是对骨骼肿瘤研究组(SORG)随机梯度提升算法进行外部验证,以预测SEA患者的住院期间和出院后90天死亡率。

研究设计/地点:2003年至2021年在一家三级学术医疗中心进行的回顾性病例对照研究。

患者样本

因放射学确诊为SEA而入院且未在外部机构开始治疗的成年患者。

观察指标

住院期间和出院后90天死亡率。

方法

我们在一个独立的验证队列上测试了SORG随机梯度提升算法。我们通过辨别力、校准、决策曲线分析和整体性能来评估其性能。

结果

共有212例患者符合纳入标准,短期死亡率为10.4%。在整个验证队列上测试时,SORG算法的受试者操作特征曲线下面积(AUROC)为0.82,校准截距为-0.08,校准斜率为0.96,Brier评分是0.09。

结论

通过一个同期且地理位置不同的独立队列,我们报告了一种机器学习算法在预测SEA患者住院期间和出院后90天死亡率方面成功的外部验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验