文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 WGCNA 鉴定不同类型慢性肾脏病中的关键通路和基因。

Identification of key pathways and genes in different types of chronic kidney disease based on WGCNA.

机构信息

Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China.

Department of Center Laboratory, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510700, P.R. China.

出版信息

Mol Med Rep. 2019 Sep;20(3):2245-2257. doi: 10.3892/mmr.2019.10443. Epub 2019 Jun 28.


DOI:10.3892/mmr.2019.10443
PMID:31257514
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6691232/
Abstract

Chronic kidney disease (CKD) is a highly heterogeneous nephrosis that occurs when the structure and function of the kidney is damaged. Gene expression studies have been widely used to elucidate various biological processes; however, the gene expression profile of CKD is currently unclear. The present study aimed to identify diagnostic biomarkers and therapeutic targets using renal biopsy sample data from patients with CKD. Gene expression data from 30 patients with CKD and 21 living donors were analyzed by weighted gene co‑expression network analysis (WGCNA), in order to identify gene networks and profiles for CKD, as well as its specific characteristics, and to potentially uncover diagnostic biomarkers and therapeutic targets for patients with CKD. In addition, functional enrichment analysis was performed on co‑expressed genes to determine modules of interest. Four co‑expression modules were constructed from the WGCNA. The number of genes in the constructed modules ranged from 269 genes in the Turquoise module to 60 genes in the Yellow module. All four co‑expression modules were correlated with CKD clinical traits (P<0.05). For example, the Turquoise module, which mostly contained genes that were upregulated in CKD, was positively correlated with CKD clinical traits, whereas the Blue, Brown and Yellow modules were negatively correlated with clinical traits. Functional enrichment analysis revealed that the Turquoise module was mainly enriched in genes associated with the 'defense response', 'mitotic cell cycle' and 'collagen catabolic process' Gene Ontology (GO) terms, implying that genes involved in cell cycle arrest and fibrogenesis were upregulated in CKD. Conversely, the Yellow module was mainly enriched in genes associated with 'glomerulus development' and 'kidney development' GO terms, indicating that genes associated with renal development and damage repair were downregulated in CKD. The hub genes in the modules were acetyl‑CoA carboxylase α, cyclin‑dependent kinase 1, Wilm's tumour 1, NPHS2 stomatin family member, podocin, JunB proto‑oncogene, AP‑1 transcription factor subunit, activating transcription factor 3, forkhead box O1 and v‑abl Abelson murine leukemia viral oncogene homolog 1, which were confirmed to be significantly differentially expressed in CKD biopsies. Combining the eight hub genes enabled a high capacity for discrimination between patients with CKD and healthy subjects, with an area under the receiver operating characteristic curve of 1.00. In conclusion, this study provided a framework for co‑expression modules of renal biopsy samples from patients with CKD and living donors, and identified several potential diagnostic biomarkers and therapeutic targets for CKD.

摘要

慢性肾脏病(CKD)是一种高度异质性的肾病,当肾脏的结构和功能受到损害时就会发生。基因表达研究已被广泛用于阐明各种生物学过程;然而,CKD 的基因表达谱尚不清楚。本研究旨在使用 CKD 患者的肾活检样本数据鉴定诊断生物标志物和治疗靶标。对 30 例 CKD 患者和 21 例活体供体的基因表达数据进行加权基因共表达网络分析(WGCNA)分析,以鉴定 CKD 的基因网络和特征,并可能发现 CKD 患者的诊断生物标志物和治疗靶标。此外,对共表达基因进行功能富集分析以确定感兴趣的模块。从 WGCNA 构建了四个共表达模块。构建模块中的基因数量范围从绿松石模块中的 269 个基因到黄色模块中的 60 个基因。所有四个共表达模块均与 CKD 临床特征相关(P<0.05)。例如,绿松石模块主要包含在 CKD 中上调的基因,与 CKD 临床特征呈正相关,而蓝色、棕色和黄色模块与临床特征呈负相关。功能富集分析表明,绿松石模块主要富集与“防御反应”、“有丝分裂细胞周期”和“胶原分解代谢过程”GO 术语相关的基因,表明与细胞周期停滞和纤维化相关的基因在 CKD 中上调。相反,黄色模块主要富集与“肾小球发育”和“肾脏发育”GO 术语相关的基因,表明与肾脏发育和损伤修复相关的基因在 CKD 中下调。模块中的枢纽基因是乙酰辅酶 A 羧化酶α、周期蛋白依赖性激酶 1、Wilm 肿瘤 1、NPHS2 质膜家族成员、足细胞、JunB 原癌基因、AP-1 转录因子亚基、激活转录因子 3、叉头框 O1 和 v-abl Abelson 鼠白血病病毒致癌基因同源物 1,这些基因在 CKD 活检中被证实差异表达显著。将八个枢纽基因结合起来,可以实现对 CKD 患者和健康受试者的高区分能力,受试者工作特征曲线下面积为 1.00。总之,本研究为 CKD 患者和活体供体的肾活检样本共表达模块提供了一个框架,并确定了几个潜在的 CKD 诊断生物标志物和治疗靶标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/bffbcbaf55b4/MMR-20-03-2245-g12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/7dfb4fb97462/MMR-20-03-2245-g00.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/1352df7417b4/MMR-20-03-2245-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/dd0115c44274/MMR-20-03-2245-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/c7047aa968b1/MMR-20-03-2245-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/1e5a36adc68e/MMR-20-03-2245-g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/45c682f240a6/MMR-20-03-2245-g05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/857f9956bb32/MMR-20-03-2245-g06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/94eb2efd8bc6/MMR-20-03-2245-g07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/5e75a3502a98/MMR-20-03-2245-g08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/05f2d41f84a5/MMR-20-03-2245-g09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/e9b90437ee48/MMR-20-03-2245-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/d4f5ce4ec237/MMR-20-03-2245-g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/bffbcbaf55b4/MMR-20-03-2245-g12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/7dfb4fb97462/MMR-20-03-2245-g00.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/1352df7417b4/MMR-20-03-2245-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/dd0115c44274/MMR-20-03-2245-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/c7047aa968b1/MMR-20-03-2245-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/1e5a36adc68e/MMR-20-03-2245-g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/45c682f240a6/MMR-20-03-2245-g05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/857f9956bb32/MMR-20-03-2245-g06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/94eb2efd8bc6/MMR-20-03-2245-g07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/5e75a3502a98/MMR-20-03-2245-g08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/05f2d41f84a5/MMR-20-03-2245-g09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/e9b90437ee48/MMR-20-03-2245-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/d4f5ce4ec237/MMR-20-03-2245-g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382a/6691232/bffbcbaf55b4/MMR-20-03-2245-g12.jpg

相似文献

[1]
Identification of key pathways and genes in different types of chronic kidney disease based on WGCNA.

Mol Med Rep. 2019-6-28

[2]
Identification of surrogate prognostic biomarkers for allergic asthma in nasal epithelial brushing samples by WGCNA.

J Cell Biochem. 2018-10-10

[3]
The key candidate genes in tubulointerstitial injury of chronic kidney diseases patients as determined by bioinformatic analysis.

Cell Biochem Funct. 2020-8

[4]
Weighted gene co-expression network analysis revealed key biomarkers associated with the diagnosis of hypertrophic cardiomyopathy.

Hereditas. 2020-10-24

[5]
Weighted Gene Correlation Network Analysis (WGCNA) Detected Loss of MAGI2 Promotes Chronic Kidney Disease (CKD) by Podocyte Damage.

Cell Physiol Biochem. 2018

[6]
Identification of Important Modules and Hub Gene in Chronic Kidney Disease Based on WGCNA.

J Immunol Res. 2022

[7]
Co-Expression Network Analysis Identifies miRNA⁻mRNA Networks Potentially Regulating Milk Traits and Blood Metabolites.

Int J Mol Sci. 2018-8-24

[8]
Identification of Diagnostic Gene Markers and Immune Infiltration in Systemic Lupus.

Comput Math Methods Med. 2022-5-10

[9]
Identification of candidate target genes for human peripheral arterial disease using weighted gene co‑expression network analysis.

Mol Med Rep. 2015-12

[10]
Identification of specific modules and significant genes associated with colon cancer by weighted gene co‑expression network analysis.

Mol Med Rep. 2019-5-24

引用本文的文献

[1]
Proteome Network Analysis Identifies Potential Biomarkers for Brain Aging.

J Alzheimers Dis. 2023

[2]
Brain Gene Co-Expression Network Analysis Identifies 22q13 Region Genes Associated with Autism, Intellectual Disability, Seizures, Language Impairment, and Hypotonia.

Genes (Basel). 2023-10-26

[3]
ELAC2 Functions as a Key Gene in the Early Development of Placental Formation Based on WGCNA.

Cells. 2023-2-14

[4]
Identification of pathogenic genes associated with CKD: An integrated bioinformatics approach.

Front Genet. 2022-8-11

[5]
Weighted Gene Co-Expression Network Analysis (WGCNA) Reveals the Functions of Syndecan-1 to Regulate Immune Infiltration by Influenced T Cells in Glioma.

Front Genet. 2022-5-20

[6]
Evaluating the cytotoxicity and pathogenicity of multi-walled carbon nanotube through weighted gene co-expression network analysis: a nanotoxicogenomics study.

BMC Genom Data. 2022-2-17

[7]
Genome-wide DNA methylome and transcriptome changes induced by inorganic nanoparticles in human kidney cells after chronic exposure.

Cell Biol Toxicol. 2023-10

[8]
Apolipoprotein D as a Potential Biomarker and Construction of a Transcriptional Regulatory-Immune Network Associated with Osteoarthritis by Weighted Gene Coexpression Network Analysis.

Cartilage. 2021-12

[9]
Identifying Conserved Generic spp. Co-Expressed Gene Modules Associated with Germination Using Cross-Platform and Cross-Species Transcriptomics.

J Fungi (Basel). 2021-4-1

本文引用的文献

[1]
The Gene Ontology Resource: 20 years and still GOing strong.

Nucleic Acids Res. 2019-1-8

[2]
Identification of surrogate prognostic biomarkers for allergic asthma in nasal epithelial brushing samples by WGCNA.

J Cell Biochem. 2018-10-10

[3]
Integrative analysis of promising molecular biomarkers and pathways for coronary artery disease using WGCNA and MetaDE methods.

Mol Med Rep. 2018-7-16

[4]
Weighted gene co‑expression network analysis in identification of key genes and networks for ischemic‑reperfusion remodeling myocardium.

Mol Med Rep. 2018-6-14

[5]
Metabolic pathways and immunometabolism in rare kidney diseases.

Ann Rheum Dis. 2018-5-3

[6]
Cyclosporine A responsive congenital nephrotic syndrome with single heterozygous variants in NPHS1, NPHS2, and PLCE1.

Pediatr Nephrol. 2018-4-16

[7]
A large lung gene expression study identifying IL1B as a novel player in airway inflammation in COPD airway epithelial cells.

Inflamm Res. 2018-4-3

[8]
Endothelial factors in the pathogenesis and treatment of chronic kidney disease Part II: Role in disease conditions: a joint consensus statement from the European Society of Hypertension Working Group on Endothelin and Endothelial Factors and the Japanese Society of Hypertension.

J Hypertens. 2018-3

[9]
Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma.

Exp Eye Res. 2017-10-12

[10]
WT1 Is Necessary for the Proliferation and Migration of Cells of Renin Lineage Following Kidney Podocyte Depletion.

Stem Cell Reports. 2017-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索