Suppr超能文献

共生豆科植物和根瘤菌中铝毒性、耐受性及缓解的性质和机制。

Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia.

作者信息

Jaiswal Sanjay K, Naamala Judith, Dakora Felix D

机构信息

1Department of Chemistry, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa.

2Department of Crop Sciences, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa.

出版信息

Biol Fertil Soils. 2018;54(3):309-318. doi: 10.1007/s00374-018-1262-0. Epub 2018 Feb 12.

Abstract

Recent findings on the effect of aluminium (Al) on the functioning of legumes and their associated microsymbionts are reviewed here. Al represents 7% of solid matter in the Earth's crust and is an important abiotic factor that alters microbial and plant functioning at very early stages. The trivalent Al (Al) dominates at pH < 5 in soils and becomes a constraint to legume productivity through its lethal effect on rhizobia, the host plant and their interaction. Al has lethal effects on many aspects of the rhizobia/legume symbiosis, which include a decrease in root elongation and root hair formation, lowered soil rhizobial population, and suppression of nitrogen metabolism involving nitrate reduction, nitrite reduction, nitrogenase activity and the functioning of uptake of hydrogenases (Hup), ultimately impairing the N fixation process. At the molecular level, Al is known to suppress the expression of nodulation genes in symbiotic rhizobia, as well as the induction of genes for the formation of hexokinase, phosphodiesterase, phosphooxidase and acid/alkaline phosphatase. Al toxicity can also induce the accumulation of reactive oxygen species and callose, in addition to lipoperoxidation in the legume root elongation zone. Al tolerance in plants can be achieved through over-expression of citrate synthase gene in roots and/or the synthesis and release of organic acids that reverse Al-induced changes in proteins, as well as metabolic regulation by plant-secreted microRNAs. In contrast, Al tolerance in symbiotic rhizobia is attained via the production of exopolysaccharides, the synthesis of siderophores that reduce Al uptake, induction of efflux pumps resistant to heavy metals and the expression of metal-inducible (RF) gene clusters in symbiotic Rhizobiaceae. In soils, Al toxicity is usually ameliorated through liming, organic matter supply and use of Al-tolerant species. Our current understanding of crop productivity in high Al soils suggests that a much greater future accumulation of Al is likely to occur in agricultural soils globally if crop irrigation is increased under a changing climate.

摘要

本文综述了近期关于铝(Al)对豆科植物及其相关微共生体功能影响的研究结果。铝占地球地壳固体物质的7%,是一个重要的非生物因素,在很早的阶段就会改变微生物和植物的功能。三价铝(Al³⁺)在土壤pH值<5时占主导地位,并通过对根瘤菌、寄主植物及其相互作用的致死作用,成为豆科植物生产力的限制因素。铝对根瘤菌/豆科植物共生的许多方面都有致死作用,包括根伸长和根毛形成减少、土壤根瘤菌数量降低,以及抑制涉及硝酸盐还原、亚硝酸盐还原、固氮酶活性和氢化酶(Hup)吸收功能的氮代谢,最终损害固氮过程。在分子水平上,已知铝会抑制共生根瘤菌中结瘤基因的表达,以及己糖激酶、磷酸二酯酶、磷酸氧化酶和酸性/碱性磷酸酶形成相关基因的诱导。铝毒性还会诱导活性氧和胼胝质的积累,以及豆科植物根伸长区的脂质过氧化。植物对铝的耐受性可以通过根中柠檬酸合酶基因的过表达和/或逆转铝诱导的蛋白质变化的有机酸的合成与释放,以及植物分泌的微小RNA的代谢调控来实现。相比之下,共生根瘤菌对铝的耐受性是通过产生胞外多糖、合成减少铝吸收的铁载体、诱导对重金属有抗性的外排泵以及共生根瘤菌科中金属诱导(RF)基因簇的表达来实现的。在土壤中,通常通过施用石灰、供应有机物质和使用耐铝物种来减轻铝毒性。我们目前对高铝土壤中作物生产力的理解表明,如果在气候变化的情况下增加作物灌溉,全球农业土壤中铝的未来积累可能会大大增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e18/6560468/f01f56d366b8/374_2018_1262_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验