Bowditch Adam
University of Warwick, Coventry, UK.
Probab Theory Relat Fields. 2018;170(3):685-768. doi: 10.1007/s00440-017-0768-y. Epub 2017 Mar 8.
We study biased random walk on subcritical and supercritical Galton-Watson trees conditioned to survive in the transient, sub-ballistic regime. By considering offspring laws with infinite variance, we extend previously known results for the walk on the supercritical tree and observe new trapping phenomena for the walk on the subcritical tree which, in this case, always yield sub-ballisticity. This is contrary to the walk on the supercritical tree which always has some ballistic phase.
我们研究了在亚临界和超临界高尔顿-沃森树上的有偏随机游走,这些树被条件化为在瞬态、亚弹道状态下存活。通过考虑具有无限方差的后代律,我们扩展了先前关于超临界树上随机游走的已知结果,并观察到亚临界树上随机游走的新捕获现象,在这种情况下,总是产生亚弹道性。这与超临界树上的随机游走相反,后者总是有一些弹道阶段。