Duong Manh Hong, Lamacz Agnes, Peletier Mark A, Sharma Upanshu
1Mathematics Institute, University of Warwick, Coventry, United Kingdom.
Fakultät für Mathematik, Dortmund, Germany.
Calc Var Partial Differ Equ. 2017;56(4):100. doi: 10.1007/s00526-017-1186-9. Epub 2017 Jun 28.
In this paper we present a variational technique that handles coarse-graining and passing to a limit in a unified manner. The technique is based on a duality structure, which is present in many gradient flows and other variational evolutions, and which often arises from a large-deviations principle. It has three main features: (a) a natural interaction between the duality structure and the coarse-graining, (b) application to systems with non-dissipative effects, and (c) application to coarse-graining of approximate solutions which solve the equation only to some error. As examples, we use this technique to solve three limit problems, the overdamped limit of the Vlasov-Fokker-Planck equation and the small-noise limit of randomly perturbed Hamiltonian systems with one and with many degrees of freedom.
在本文中,我们提出了一种变分技术,该技术以统一的方式处理粗粒化并取极限。该技术基于一种对偶结构,这种对偶结构存在于许多梯度流和其他变分演化中,并且常常源自大偏差原理。它具有三个主要特征:(a) 对偶结构与粗粒化之间的自然相互作用;(b) 应用于具有非耗散效应的系统;(c) 应用于仅在一定误差范围内求解方程的近似解的粗粒化。作为示例,我们使用该技术解决三个极限问题,即弗拉索夫 - 福克 - 普朗克方程的过阻尼极限以及具有一个和多个自由度的随机扰动哈密顿系统的小噪声极限。