Suppr超能文献

基于相对熵框架的粗粒化误差与数值优化。

Coarse-graining errors and numerical optimization using a relative entropy framework.

机构信息

Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106-5080, USA.

出版信息

J Chem Phys. 2011 Mar 7;134(9):094112. doi: 10.1063/1.3557038.

Abstract

The ability to generate accurate coarse-grained models from reference fully atomic (or otherwise "first-principles") ones has become an important component in modeling the behavior of complex molecular systems with large length and time scales. We recently proposed a novel coarse-graining approach based upon variational minimization of a configuration-space functional called the relative entropy, S(rel), that measures the information lost upon coarse-graining. Here, we develop a broad theoretical framework for this methodology and numerical strategies for its use in practical coarse-graining settings. In particular, we show that the relative entropy offers tight control over the errors due to coarse-graining in arbitrary microscopic properties, and suggests a systematic approach to reducing them. We also describe fundamental connections between this optimization methodology and other coarse-graining strategies like inverse Monte Carlo, force matching, energy matching, and variational mean-field theory. We suggest several new numerical approaches to its minimization that provide new coarse-graining strategies. Finally, we demonstrate the application of these theoretical considerations and algorithms to a simple, instructive system and characterize convergence and errors within the relative entropy framework.

摘要

从参考的全原子(或“第一性原理”)模型生成准确的粗粒模型的能力已经成为对具有大长度和时间尺度的复杂分子系统的行为进行建模的重要组成部分。我们最近提出了一种基于变分最小化的新的粗粒化方法,该方法基于一种称为相对熵的构象空间函数,该函数用于测量粗粒化过程中丢失的信息。在这里,我们为这种方法和在实际粗粒化设置中使用的数值策略开发了一个广泛的理论框架。特别是,我们表明相对熵可以对任意微观性质的粗粒化误差进行严格控制,并提出了一种系统的方法来减小这些误差。我们还描述了这种优化方法与其他粗粒化策略(如逆蒙特卡罗、力匹配、能量匹配和变分平均场理论)之间的基本联系。我们提出了几种新的数值方法来最小化它,从而提供了新的粗粒化策略。最后,我们将这些理论考虑和算法应用于一个简单的、有启发性的系统,并在相对熵框架内对收敛性和误差进行了特征化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验