Suppr超能文献

通过调控界面在室温下实现范德华异质结构中的可调负微分电阻

Tunable Negative Differential Resistance in van der Waals Heterostructures at Room Temperature by Tailoring the Interface.

作者信息

Fan Sidi, Vu Quoc An, Lee Sanghyub, Phan Thanh Luan, Han Gyeongtak, Kim Young-Min, Yu Woo Jong, Lee Young Hee

机构信息

Center for Integrated Nanostructure Physics, Institute for Basic Science , Sungkyunkwan University , Suwon 16419 , Korea.

Department of Energy Science, Department of Physics , Sungkyunkwan University , Suwon 16419 , Korea.

出版信息

ACS Nano. 2019 Jul 23;13(7):8193-8201. doi: 10.1021/acsnano.9b03342. Epub 2019 Jul 3.

Abstract

Vertically stacked two-dimensional van der Waals (vdW) heterostructures, used to obtain homogeneity and band steepness at interfaces, exhibit promising performance for band-to-band tunneling (BTBT) devices. Esaki tunnel diodes based on vdW heterostructures, however, yield poor current density and peak-to-valley ratio, inferior to those of three-dimensional materials. Here, we report the negative differential resistance (NDR) behavior in a WSe/SnSe heterostructure system at room temperature and demonstrate that heterointerface control is one of the keys to achieving high device performance by constructing WSe/SnSe heterostructures in inert gas environments. While devices fabricated in ambient conditions show poor device performance due to the observed oxidation layer at the interface, devices fabricated in inert gas exhibit extremely high peak current density up to 1460 mA/mm, 3-4 orders of magnitude higher than reported vdW heterostructure-based tunnel diodes, with a peak-to-valley ratio of more than 4 at room temperature. Besides, Pd/WSe contact in our device possesses a much higher Schottky barrier than previously reported Cr/WSe contact in the WSe/SnSe device, which suppresses the thermionic emission current to less than the BTBT current level, enabling the observation of NDR at room temperature. Diode behavior can be further modulated by controlling the electrostatic doping and the tunneling barrier as well.

摘要

垂直堆叠的二维范德华(vdW)异质结构用于在界面处实现均匀性和能带陡度,在带间隧穿(BTBT)器件方面展现出良好的性能。然而,基于vdW异质结构的江崎隧道二极管的电流密度和峰谷比很差,不如三维材料。在此,我们报道了WSe/SnSe异质结构系统在室温下的负微分电阻(NDR)行为,并证明通过在惰性气体环境中构建WSe/SnSe异质结构,异质界面控制是实现高器件性能的关键之一。虽然在环境条件下制造的器件由于在界面处观察到氧化层而表现出较差的器件性能,但在惰性气体中制造的器件在室温下表现出极高的峰值电流密度,高达1460 mA/mm,比报道的基于vdW异质结构的隧道二极管高3 - 4个数量级,峰谷比超过4。此外,我们器件中的Pd/WSe接触具有比先前报道的WSe/SnSe器件中的Cr/WSe接触高得多的肖特基势垒,这将热电子发射电流抑制到小于BTBT电流水平,从而能够在室温下观察到NDR。通过控制静电掺杂和隧穿势垒,二极管行为也可以进一步调制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验