Suppr超能文献

用于新兴神经形态电子学的伪晶体管。

Pseudo-transistors for emerging neuromorphic electronics.

作者信息

Fu Jingwei, Wang Jie, He Xiang, Ming Jianyu, Wang Le, Wang Yiru, Shao He, Zheng Chaoyue, Xie Linghai, Ling Haifeng

机构信息

State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.

Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.

出版信息

Sci Technol Adv Mater. 2023 Mar 20;24(1):2180286. doi: 10.1080/14686996.2023.2180286. eCollection 2023.

Abstract

Artificial synaptic devices are the cornerstone of neuromorphic electronics. The development of new artificial synaptic devices and the simulation of biological synaptic computational functions are important tasks in the field of neuromorphic electronics. Although two-terminal memristors and three-terminal synaptic transistors have exhibited significant capabilities in the artificial synapse, more stable devices and simpler integration are needed in practical applications. Combining the configuration advantages of memristors and transistors, a novel pseudo-transistor is proposed. Here, recent advances in the development of pseudo-transistor-based neuromorphic electronics in recent years are reviewed. The working mechanisms, device structures and materials of three typical pseudo-transistors, including tunneling random access memory (TRAM), memflash and memtransistor, are comprehensively discussed. Finally, the future development and challenges in this field are emphasized.

摘要

人工突触器件是神经形态电子学的基石。新型人工突触器件的开发以及生物突触计算功能的模拟是神经形态电子学领域的重要任务。尽管两端忆阻器和三端突触晶体管在人工突触中已展现出显著能力,但实际应用中仍需要更稳定的器件和更简单的集成方式。结合忆阻器和晶体管的结构优势,提出了一种新型伪晶体管。在此,对近年来基于伪晶体管的神经形态电子学的发展进展进行综述。全面讨论了三种典型伪晶体管的工作机制、器件结构和材料,包括隧穿随机存取存储器(TRAM)、忆闪存储器和忆晶体管。最后,强调了该领域未来的发展和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8952/10035954/5124bd5cb060/TSTA_A_2180286_UF0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验