文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

钴基非晶带材中滞后巨磁阻抗效应的应变依赖性

Strain Dependence of Hysteretic Giant Magnetoimpedance Effect in Co-Based Amorphous Ribbon.

作者信息

Nowicki Michał, Gazda Piotr, Szewczyk Roman, Marusenkov Andriy, Nosenko Anton, Kyrylchuk Vasyl

机构信息

Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, 02-495 Warsaw, Poland.

Lviv Center of the Institute of Space Research, 79060 Lviv, Ukraine.

出版信息

Materials (Basel). 2019 Jun 30;12(13):2110. doi: 10.3390/ma12132110.


DOI:10.3390/ma12132110
PMID:31262016
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6651656/
Abstract

The significant strain dependence of the hysteretic Giant Magnetoimpedance (GMI) effect in a CoFeCrBSi amorphous alloy in a low magnetizing field is presented. A simplistic test stand capable of continuous measurements of GMI characteristics under the influence of strain is detailed. Based on the results, a stress-impedance (SI) sensor is proposed, with a gauge factor similar to semiconductor strain gauges but more robust. An effective method of minimizing external magnetic field influence on the SI effect is given.

摘要

本文介绍了在低磁场下,CoFeCrBSi非晶合金中磁滞巨磁阻抗(GMI)效应的显著应变依赖性。详细说明了一种能够在应变影响下连续测量GMI特性的简单测试台。基于这些结果,提出了一种应力阻抗(SI)传感器,其应变系数与半导体应变片相似,但更为坚固耐用。给出了一种有效降低外部磁场对SI效应影响的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/99b2445c934f/materials-12-02110-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/d52ff7bc43f5/materials-12-02110-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/75d825d4c8c6/materials-12-02110-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/2c0597c9abcb/materials-12-02110-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/3b293acb312b/materials-12-02110-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/0e6a85b8dca6/materials-12-02110-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/99b2445c934f/materials-12-02110-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/d52ff7bc43f5/materials-12-02110-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/75d825d4c8c6/materials-12-02110-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/2c0597c9abcb/materials-12-02110-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/3b293acb312b/materials-12-02110-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/0e6a85b8dca6/materials-12-02110-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/6651656/99b2445c934f/materials-12-02110-g006.jpg

相似文献

[1]
Strain Dependence of Hysteretic Giant Magnetoimpedance Effect in Co-Based Amorphous Ribbon.

Materials (Basel). 2019-6-30

[2]
The Disturbing Effect of the Stray Magnetic Fields on Magnetoimpedance Sensors.

Sensors (Basel). 2016-10-17

[3]
Magnetoimpedance Response and Field Sensitivity in Stress-Annealed Co-Based Microwires for Sensor Applications.

Sensors (Basel). 2020-6-5

[4]
Optimization of magnetic properties and GMI effect of Thin Co-rich Microwires for GMI Microsensors.

Sensors (Basel). 2020-3-11

[5]
Non-Contact Current Sensing System Based on the Giant Magnetoimpedance Effect of CoFeNiSiB Amorphous Ribbon Meanders.

Micromachines (Basel). 2024-1-21

[6]
A Combination of a Vibrational Electromagnetic Energy Harvester and a Giant Magnetoimpedance (GMI) Sensor.

Sensors (Basel). 2020-3-27

[7]
The Impact of Bending Stress on the Performance of Giant Magneto-Impedance (GMI) Magnetic Sensors.

Sensors (Basel). 2017-3-20

[8]
Giant Stress-Impedance Effect in CoFeNiMoBSi Alloy in Variation of Applied Magnetic Field.

Materials (Basel). 2021-4-12

[9]
Novel Giant Magnetoimpedance Magnetic Field Sensor.

Sensors (Basel). 2020-1-27

[10]
Magnetic Dynabeads detection by sensitive element based on giant magnetoimpedance.

Biosens Bioelectron. 2005-2-15

引用本文的文献

[1]
Magnetic Properties of FeNi/Cu-Based Lithographic Rectangular Multilayered Elements for Magnetoimpedance Applications.

Sensors (Basel). 2023-7-5

[2]
Giant Stress-Impedance Effect in CoFeNiMoBSi Alloy in Variation of Applied Magnetic Field.

Materials (Basel). 2021-4-12

[3]
Giant Stress Impedance Magnetoelastic Sensors Employing Soft Magnetic Amorphous Ribbons.

Materials (Basel). 2020-5-8

[4]
Ultrasensitive Magnetic Field Sensors for Biomedical Applications.

Sensors (Basel). 2020-3-11

[5]
Novel Giant Magnetoimpedance Magnetic Field Sensor.

Sensors (Basel). 2020-1-27

[6]
An Hourglass-Shaped Wireless and Passive Magnetoelastic Sensor with an Improved Frequency Sensitivity for Remote Strain Measurements.

Sensors (Basel). 2020-1-8

本文引用的文献

[1]
Modeling the Hysteresis Loop of Ultra-High Permeability Amorphous Alloy for Space Applications.

Materials (Basel). 2018-10-24

[2]
Tailoring of magnetoimpedance effect and magnetic softness of Fe-rich glass-coated microwires by stress- annealing.

Sci Rep. 2018-2-16

[3]
The Impact of Bending Stress on the Performance of Giant Magneto-Impedance (GMI) Magnetic Sensors.

Sensors (Basel). 2017-3-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索