文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种沙漏形无线无源磁弹性传感器,具有改进的频率灵敏度,可用于远程应变测量。

An Hourglass-Shaped Wireless and Passive Magnetoelastic Sensor with an Improved Frequency Sensitivity for Remote Strain Measurements.

机构信息

School of Mechanical Engineering, Northeast Electric Power University, Jilin 132012, China.

出版信息

Sensors (Basel). 2020 Jan 8;20(2):359. doi: 10.3390/s20020359.


DOI:10.3390/s20020359
PMID:31936418
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7013433/
Abstract

The conventional magnetoelastic resonant sensor suffers from a low detecting sensitivity problem. In this study, an hourglass-shaped magnetoelastic resonant sensor was proposed, analyzed, fabricated, and tested. The hourglass-shaped magnetoelastic resonant sensor was composed of an hourglass and a narrow ribbon in the middle. The hourglass and the narrow ribbon increased the detection sensitivity by reducing the connecting stress. The resonant frequency of the sensor was investigated by the finite element method. The proposed sensor was fabricated and experiments were carried out. The tested resonance frequency agreed well with the simulated one. The maximum trust sensitivity of the proposed sensor was 37,100 Hz/strain. The power supply and signal transmission of the proposed sensor were fulfilled via magnetic field in a wireless and passive way due to the magnetostrictive effect. Parametric studies were carried out to investigate the influence of the hourglass shape on the resonant frequency and the output voltage. The hourglass-shaped magnetoelastic resonant sensor shows advantages of high sensitivity, a simple structure, easy fabrication, passiveness, remoteness, and low cost.

摘要

传统的磁弹谐振传感器存在检测灵敏度低的问题。本研究提出、分析、制作和测试了一种沙漏型磁弹谐振传感器。沙漏型磁弹谐振传感器由沙漏和中间的窄带组成。沙漏和窄带通过降低连接应力提高了检测灵敏度。通过有限元法研究了传感器的谐振频率。制作了所提出的传感器并进行了实验。测试的共振频率与模拟的吻合较好。所提出的传感器的最大信任灵敏度为 37100 Hz/应变。由于磁致伸缩效应,传感器通过磁场以无线和无源的方式实现电源和信号传输。进行了参数研究以调查沙漏形状对谐振频率和输出电压的影响。沙漏型磁弹谐振传感器具有灵敏度高、结构简单、易于制作、无源、远程和低成本的优点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/04218b7b4ec1/sensors-20-00359-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/9ff74acd16c9/sensors-20-00359-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/318df0a1cbe0/sensors-20-00359-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/19fc02ac44cf/sensors-20-00359-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/d8c9b0b510c2/sensors-20-00359-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/f751be3b560e/sensors-20-00359-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/5b9f4008f40f/sensors-20-00359-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/cea9c03885d1/sensors-20-00359-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/fb94bb5a4766/sensors-20-00359-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/e1be6a56168f/sensors-20-00359-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/f781883a7a53/sensors-20-00359-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/04218b7b4ec1/sensors-20-00359-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/9ff74acd16c9/sensors-20-00359-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/318df0a1cbe0/sensors-20-00359-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/19fc02ac44cf/sensors-20-00359-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/d8c9b0b510c2/sensors-20-00359-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/f751be3b560e/sensors-20-00359-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/5b9f4008f40f/sensors-20-00359-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/cea9c03885d1/sensors-20-00359-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/fb94bb5a4766/sensors-20-00359-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/e1be6a56168f/sensors-20-00359-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/f781883a7a53/sensors-20-00359-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0791/7013433/04218b7b4ec1/sensors-20-00359-g011.jpg

相似文献

[1]
An Hourglass-Shaped Wireless and Passive Magnetoelastic Sensor with an Improved Frequency Sensitivity for Remote Strain Measurements.

Sensors (Basel). 2020-1-8

[2]
Removal of earth's magnetic field effect on magnetoelastic resonance sensors by an antisymmetric bias field.

Sens Actuators A Phys. 2012-8

[3]
A wireless, remote query magnetoelastic CO2 sensor.

J Environ Monit. 2000-12

[4]
Model for Wireless Magnetoelastic Strain Sensors.

Sensors (Basel). 2020-6-23

[5]
Wireless Strain Measurement with a Micromachined Magnetoelastic Resonator Using Ringdown Frequency Locking.

ISSS J Micro Smart Syst. 2017-6

[6]
Magnetoelastic Sensor Optimization for Improving Mass Monitoring.

Sensors (Basel). 2022-1-22

[7]
A Batteryless, Wireless Strain Sensor Using Resonant Frequency Modulation.

Sensors (Basel). 2018-11-15

[8]
A wireless, remote query glucose biosensor based on a pH-sensitive polymer.

Anal Chem. 2004-7-15

[9]
A remote query magnetoelastic pH sensor.

Sens Actuators B Chem. 2000-11-15

[10]
[Design of a Low-power-consuming Magnetoelastic Sensor Detecting System Based on STM32].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2016-10

引用本文的文献

[1]
Sensors Based on Auxetic Materials and Structures: A Review.

Materials (Basel). 2023-5-8

[2]
Giant Stress-Impedance Effect in CoFeNiMoBSi Alloy in Variation of Applied Magnetic Field.

Materials (Basel). 2021-4-12

本文引用的文献

[1]
Size Dependence of the Magnetoelastic Properties of Metallic Glasses for Actuation Applications.

Sensors (Basel). 2019-10-4

[2]
Microstrip Patch Strain Sensor Miniaturization Using Sierpinski Curve Fractal Geometry.

Sensors (Basel). 2019-9-15

[3]
Strain Dependence of Hysteretic Giant Magnetoimpedance Effect in Co-Based Amorphous Ribbon.

Materials (Basel). 2019-6-30

[4]
Highly Integrated MEMS Magnetic Sensor Based on GMI Effect of Amorphous Wire.

Micromachines (Basel). 2019-4-8

[5]
Comparison of Stress-Impedance Effect in Amorphous Ribbons with Positive and Negative Magnetostriction.

Materials (Basel). 2019-1-16

[6]
Tensductor-Amorphous Alloy Based Magnetoelastic Tensile Force Sensor.

Sensors (Basel). 2018-12-14

[7]
Monitoring and Assessing the Degradation Rate of Magnesium-Based Artificial Bone In Vitro Using a Wireless Magnetoelastic Sensor.

Sensors (Basel). 2018-9-12

[8]
Accurate Determination of the Q Quality Factor in Magnetoelastic Resonant Platforms for Advanced Biological Detection.

Sensors (Basel). 2018-3-16

[9]
A Passive and Wireless Sensor for Bone Plate Strain Monitoring.

Sensors (Basel). 2017-11-16

[10]
Wireless Strain Measurement with a Micromachined Magnetoelastic Resonator Using Ringdown Frequency Locking.

ISSS J Micro Smart Syst. 2017-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索