Institut für Biochemie , Universität Greifswald , Felix-Hausdorff-Straße 4 , 17487 Greifswald , Germany.
Institut für Pharmazie , Universität Greifswald , Friedrich-Ludwig-Jahn-Straße 17 , 17487 Greifswald , Germany.
J Phys Chem B. 2019 Jul 18;123(28):5995-6006. doi: 10.1021/acs.jpcb.9b03134. Epub 2019 Jul 2.
In many cases, native states of proteins may be predicted with sufficient accuracy by molecular dynamics simulations (MDSs) with modern force fields. Enhanced sampling methods based on MDS are applied for exploring the phase space of a protein sequence and to overcome barriers on rough conformational energy landscapes. The minimum free energy state is obtained with sampling algorithms providing sufficient convergence and accuracy. A reliable but computationally very expensive method is replica exchange molecular dynamics, with many modifications to this approach presented in the past. Recently, we demonstrated how our temperature intervals with global exchange of replicas hybrid (TIGER2h) solvent sampling algorithm made a good compromise between efficiency and accuracy. There, all states are sampled under full explicit solvent conditions with a freely chosen number of replicas, whereas an implicit solvent is used during the swap decisions. This hybrid method yielded a much better approximation to the agreement with calculations in an explicit solvent than fully implicit solvent simulations. Here, we present an extension of TIGER2h and add a few layers of explicit water molecules around the peptide for the energy calculations, whereas the dynamics in fully explicit water is maintained. We claim that these water layers better reproduce steric effects, the polarization of the solvent, and the resulting reaction field energy than typical implicit solvent models. By investigating the protein-solvent interactions across comprehensive thermodynamic state ensembles, we found a strong conformational dependence of this reaction field energy. All simulations were performed with nanoscale molecular dynamics on two peptides, the α-helical peptide (AAQAA) and the β-hairpin peptide HP7. A production-ready TIGER2hs implementation is supplied, approaching the accuracy of full explicit solvent sampling at a fraction of computational resources.
在许多情况下,现代力场的分子动力学模拟 (MDS) 可以足够准确地预测蛋白质的天然状态。基于 MDS 的增强采样方法用于探索蛋白质序列的相空间,并克服粗糙构象能量景观上的障碍。通过采样算法获得最小自由能状态,这些算法提供足够的收敛性和准确性。复制交换分子动力学是一种可靠但计算成本非常高的方法,过去对这种方法进行了许多修改。最近,我们展示了我们的温度间隔全局交换副本混合 (TIGER2h) 溶剂采样算法如何在效率和准确性之间取得良好的折衷。在这种方法中,所有状态都在完全显式溶剂条件下进行采样,使用任意数量的副本,而在交换决策期间使用隐式溶剂。与在显式溶剂中进行的计算相比,这种混合方法对协议的近似程度要好得多。在这里,我们提出了 TIGER2h 的扩展,并在肽周围添加了几层显式水分子进行能量计算,同时保持完全显式水中的动力学。我们声称,这些水分子层比典型的隐式溶剂模型更好地再现了空间效应、溶剂的极化和由此产生的反应场能量。通过研究蛋白质-溶剂相互作用跨越全面的热力学状态集合,我们发现这种反应场能量具有很强的构象依赖性。所有模拟都在两个肽上进行了纳米尺度的分子动力学模拟,即 α-螺旋肽 (AAQAA) 和 β-发夹肽 HP7。提供了一个生产就绪的 TIGER2hs 实现,以计算资源的一小部分接近全显式溶剂采样的准确性。