Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany.
Department of Hematology and Oncology, Internal Medicine C, University Greifswald, 17489 Greifswald, Germany.
Int J Mol Sci. 2021 Mar 31;22(7):3650. doi: 10.3390/ijms22073650.
Transcription factors play a crucial role in regulating biological processes such as cell growth, differentiation, organ development and cellular signaling. Within this group, proteins equipped with zinc finger motifs (ZFs) represent the largest family of sequence-specific DNA-binding transcription regulators. Numerous studies have proven the fundamental role of BCL11B for a variety of tissues and organs such as central nervous system, T cells, skin, teeth, and mammary glands. In a previous work we identified a novel atypical zinc finger domain (CCHC-ZF) which serves as a dimerization interface of BCL11B. This domain and formation of the dimer were shown to be critically important for efficient regulation of the BCL11B target genes and could therefore represent a promising target for novel drug therapies. Here, we report the structural basis for BCL11B-BCL11B interaction mediated by the N-terminal ZF domain. By combining structure prediction algorithms, enhanced sampling molecular dynamics and fluorescence resonance energy transfer (FRET) approaches, we identified amino acid residues indispensable for the formation of the single ZF domain and directly involved in forming the dimer interface. These findings not only provide deep insight into how BCL11B acquires its active structure but also represent an important step towards rational design or selection of potential inhibitors.
转录因子在调节细胞生长、分化、器官发育和细胞信号等生物过程中起着至关重要的作用。在这个群体中,配备锌指基序 (ZFs) 的蛋白质代表了最大的序列特异性 DNA 结合转录调节因子家族。许多研究已经证明了 BCL11B 在中枢神经系统、T 细胞、皮肤、牙齿和乳腺等各种组织和器官中的基本作用。在之前的工作中,我们鉴定了一种新型的非典型锌指结构域 (CCHC-ZF),它作为 BCL11B 的二聚化界面。该结构域和二聚体的形成对于 BCL11B 靶基因的有效调节至关重要,因此可能成为新型药物治疗的有前途的靶点。在这里,我们报告了由 N 端 ZF 结构域介导的 BCL11B-BCL11B 相互作用的结构基础。通过结合结构预测算法、增强采样分子动力学和荧光共振能量转移 (FRET) 方法,我们确定了形成单个 ZF 结构域所必需的氨基酸残基,并直接参与形成二聚体界面。这些发现不仅深入了解了 BCL11B 如何获得其活性结构,而且代表了朝着合理设计或选择潜在抑制剂迈出的重要一步。