Suppr超能文献

通过大偏差理论对罕见事件进行数值计算。

Numerical computation of rare events via large deviation theory.

作者信息

Grafke Tobias, Vanden-Eijnden Eric

机构信息

Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom.

Courant Institute, New York University, 251 Mercer Street, New York, New York 10012, USA.

出版信息

Chaos. 2019 Jun;29(6):063118. doi: 10.1063/1.5084025.

Abstract

An overview of rare event algorithms based on large deviation theory (LDT) is presented. It covers a range of numerical schemes to compute the large deviation minimizer in various setups and discusses best practices, common pitfalls, and implementation tradeoffs. Generalizations, extensions, and improvements of the minimum action methods are proposed. These algorithms are tested on example problems which illustrate several common difficulties which arise, e.g., when the forcing is degenerate or multiplicative, or the systems are infinite-dimensional. Generalizations to processes driven by non-Gaussian noises or random initial data and parameters are also discussed, along with the connection between the LDT-based approach reviewed here and other methods, such as stochastic field theory and optimal control. Finally, the integration of this approach in importance sampling methods using, e.g., genealogical algorithms, is explored.

摘要

本文给出了基于大偏差理论(LDT)的稀有事件算法综述。它涵盖了一系列数值方案,用于在各种设置下计算大偏差极小化器,并讨论了最佳实践、常见陷阱和实现权衡。提出了最小作用量方法的推广、扩展和改进。这些算法在示例问题上进行了测试,这些问题说明了出现的几个常见困难,例如,当强迫是退化的或乘法性的,或者系统是无限维的。还讨论了对由非高斯噪声或随机初始数据和参数驱动的过程的推广,以及这里回顾的基于LDT的方法与其他方法(如随机场理论和最优控制)之间的联系。最后,探索了这种方法在使用例如系谱算法的重要性采样方法中的集成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验