Margazoglou Georgios, Grafke Tobias, Laio Alessandro, Lucarini Valerio
Department of Mathematics and Statistics, University of Reading, Reading, UK.
Centre for the Mathematics of Planet Earth, University of Reading, Reading, UK.
Proc Math Phys Eng Sci. 2021 Jun;477(2250):20210019. doi: 10.1098/rspa.2021.0019. Epub 2021 Jun 2.
We apply two independent data analysis methodologies to locate stable climate states in an intermediate complexity climate model and analyse their interplay. First, drawing from the theory of quasi-potentials, and viewing the state space as an energy landscape with valleys and mountain ridges, we infer the relative likelihood of the identified multistable climate states and investigate the most likely transition trajectories as well as the expected transition times between them. Second, harnessing techniques from data science, and specifically manifold learning, we characterize the data landscape of the simulation output to find climate states and basin boundaries within a fully agnostic and unsupervised framework. Both approaches show remarkable agreement, and reveal, apart from the well known warm and snowball earth states, a third intermediate stable state in one of the two versions of PLASIM, the climate model used in this study. The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production via the hydrological cycle drastically change the topography of the dynamical landscape of Earth's climate.
我们应用两种独立的数据分析方法来定位中等复杂度气候模型中的稳定气候状态,并分析它们之间的相互作用。首先,借鉴准势理论,将状态空间视为具有山谷和山脊的能量景观,我们推断已识别的多稳态气候状态的相对可能性,并研究最可能的过渡轨迹以及它们之间的预期过渡时间。其次,利用数据科学技术,特别是流形学习,我们在完全无先验知识和无监督的框架内刻画模拟输出的数据景观,以找到气候状态和盆地边界。两种方法都显示出显著的一致性,并且除了众所周知的温暖地球状态和雪球地球状态之外,在本研究中使用的气候模型PLASIM的两个版本之一中还揭示了第三种中间稳定状态。我们方法的结合能够确定海洋热传输的负反馈以及通过水文循环产生的熵如何剧烈改变地球气候动力学景观的地形。