Suppr超能文献

一种使用深度学习监测治疗后疾病消退情况的早产儿视网膜病变定量严重程度量表。

A Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning to Monitor Disease Regression After Treatment.

作者信息

Gupta Kishan, Campbell J Peter, Taylor Stanford, Brown James M, Ostmo Susan, Chan R V Paul, Dy Jennifer, Erdogmus Deniz, Ioannidis Stratis, Kalpathy-Cramer Jayashree, Kim Sang J, Chiang Michael F

机构信息

Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland.

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown.

出版信息

JAMA Ophthalmol. 2019 Sep 1;137(9):1029-1036. doi: 10.1001/jamaophthalmol.2019.2442.

Abstract

IMPORTANCE

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness worldwide, but treatment failure and disease recurrence are important causes of adverse outcomes in patients with treatment-requiring ROP (TR-ROP).

OBJECTIVES

To apply an automated ROP vascular severity score obtained using a deep learning algorithm and to assess its utility for objectively monitoring ROP regression after treatment.

DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study used data from the Imaging and Informatics in ROP consortium, which comprises 9 tertiary referral centers in North America that screen high volumes of at-risk infants for ROP. Images of 5255 clinical eye examinations from 871 infants performed between July 2011 and December 2016 were assessed for eligibility in the present study. The disease course was assessed with time across the numerous examinations for patients with TR-ROP. Infants born prematurely meeting screening criteria for ROP who developed TR-ROP and who had images captured within 4 weeks before and after treatment as well as at the time of treatment were included.

MAIN OUTCOMES AND MEASURES

The primary outcome was mean (SD) ROP vascular severity score before, at time of, and after treatment. A deep learning classifier was used to assign a continuous ROP vascular severity score, which ranged from 1 (normal) to 9 (most severe), at each examination. A secondary outcome was the difference in ROP vascular severity score among eyes treated with laser or the vascular endothelial growth factor antagonist bevacizumab. Differences between groups for both outcomes were assessed using unpaired 2-tailed t tests with Bonferroni correction.

RESULTS

Of 5255 examined eyes, 91 developed TR-ROP, of which 46 eyes met the inclusion criteria based on the available images. The mean (SD) birth weight of those patients was 653 (185) g, with a mean (SD) gestational age of 24.9 (1.3) weeks. The mean (SD) ROP vascular severity scores significantly increased 2 weeks prior to treatment (4.19 [1.75]), peaked at treatment (7.43 [1.89]), and decreased for at least 2 weeks after treatment (4.00 [1.88]) (all P < .001). Eyes requiring retreatment with laser had higher ROP vascular severity scores at the time of initial treatment compared with eyes receiving a single treatment (P < .001).

CONCLUSIONS AND RELEVANCE

This quantitative ROP vascular severity score appears to consistently reflect clinical disease progression and posttreatment regression in eyes with TR-ROP. These study results may have implications for the monitoring of patients with ROP for treatment failure and disease recurrence and for determining the appropriate level of disease severity for primary treatment in eyes with aggressive disease.

摘要

重要性

早产儿视网膜病变(ROP)是全球儿童失明的主要原因,但治疗失败和疾病复发是需要治疗的ROP(TR-ROP)患者不良结局的重要原因。

目的

应用通过深度学习算法获得的自动ROP血管严重程度评分,并评估其在客观监测治疗后ROP消退方面的效用。

设计、设置和参与者:这项回顾性队列研究使用了ROP联盟的成像和信息学数据,该联盟由北美9个三级转诊中心组成,这些中心对大量高危婴儿进行ROP筛查。对2011年7月至2016年12月期间871名婴儿进行的5255次临床眼部检查的图像进行评估,以确定其是否符合本研究的纳入标准。对TR-ROP患者在多次检查中的疾病进程随时间进行评估。纳入出生时早产且符合ROP筛查标准、发展为TR-ROP且在治疗前后4周内以及治疗时均有图像记录的婴儿。

主要结局和测量指标

主要结局是治疗前、治疗时和治疗后的平均(标准差)ROP血管严重程度评分。使用深度学习分类器在每次检查时分配一个连续的ROP血管严重程度评分,范围从1(正常)到9(最严重)。次要结局是接受激光治疗或血管内皮生长因子拮抗剂贝伐单抗治疗的眼睛之间ROP血管严重程度评分的差异。使用未配对双尾t检验并进行Bonferroni校正评估两组在这两个结局上的差异。

结果

在5255只接受检查的眼睛中,91只发展为TR-ROP,其中46只眼睛根据可用图像符合纳入标准。这些患者的平均(标准差)出生体重为653(185)g,平均(标准差)胎龄为24.9(1.3)周。ROP血管严重程度评分在治疗前2周显著升高(4.19 [1.75]),在治疗时达到峰值(7.43 [1.89]),并在治疗后至少2周下降(4.00 [1.88])(所有P <.001)。与接受单次治疗的眼睛相比,需要再次接受激光治疗的眼睛在初始治疗时的ROP血管严重程度评分更高(P <.001)。

结论和相关性

这种定量的ROP血管严重程度评分似乎能够持续反映TR-ROP眼睛的临床疾病进展和治疗后消退情况。这些研究结果可能对监测ROP患者的治疗失败和疾病复发以及确定侵袭性疾病眼睛的初始治疗适当疾病严重程度水平具有启示意义。

相似文献

1
2
Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning.
JAMA Ophthalmol. 2019 Sep 1;137(9):1022-1028. doi: 10.1001/jamaophthalmol.2019.2433.
3
Aggressive Posterior Retinopathy of Prematurity: Clinical and Quantitative Imaging Features in a Large North American Cohort.
Ophthalmology. 2020 Aug;127(8):1105-1112. doi: 10.1016/j.ophtha.2020.01.052. Epub 2020 Feb 7.
5
Variability in Plus Disease Identified Using a Deep Learning-Based Retinopathy of Prematurity Severity Scale.
Ophthalmol Retina. 2020 Oct;4(10):1016-1021. doi: 10.1016/j.oret.2020.04.022. Epub 2020 May 4.
6
Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity.
Cochrane Database Syst Rev. 2018 Jan 8;1(1):CD009734. doi: 10.1002/14651858.CD009734.pub3.
7
Retinal Detachment after Treatment of Retinopathy of Prematurity with Laser versus Intravitreal Anti-Vascular Endothelial Growth Factor.
Ophthalmology. 2021 Aug;128(8):1188-1196. doi: 10.1016/j.ophtha.2020.12.028. Epub 2020 Dec 31.
10
Single-Examination Risk Prediction of Severe Retinopathy of Prematurity.
Pediatrics. 2021 Dec 1;148(6). doi: 10.1542/peds.2021-051772.

引用本文的文献

1
Persistent avascular retina in retinopathy of prematurity.
Graefes Arch Clin Exp Ophthalmol. 2025 Apr 3. doi: 10.1007/s00417-025-06820-x.
5
Changes of the peripapillary vascular parameters in premature infants without retinopathy of prematurity using U-net segmentation.
Int J Ophthalmol. 2024 Aug 18;17(8):1453-1461. doi: 10.18240/ijo.2024.08.10. eCollection 2024.
6
Light Therapy for Facial Rejuvenation and Dry Eyes, Blepharitis, and Styes.
Int Ophthalmol Clin. 2024 Jul 1;64(3):9-12. doi: 10.1097/IIO.0000000000000527. Epub 2024 Jun 24.
8
Development of a Semi-automated Computer-based Tool for the Quantification of Vascular Tortuosity in the Murine Retina.
Ophthalmol Sci. 2023 Dec 6;4(3):100439. doi: 10.1016/j.xops.2023.100439. eCollection 2024 May-Jun.
9
Development and validation of a semi-supervised deep learning model for automatic retinopathy of prematurity staging.
iScience. 2023 Nov 23;27(1):108516. doi: 10.1016/j.isci.2023.108516. eCollection 2024 Jan 19.
10
Genome-wide association identifies novel ROP risk loci in a multiethnic cohort.
Commun Biol. 2024 Jan 17;7(1):107. doi: 10.1038/s42003-023-05743-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验