Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA.
Department of Cancer Biology and Genetics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA.
Nat Commun. 2019 Jul 3;10(1):2943. doi: 10.1038/s41467-019-10925-3.
Mutations exclusively in equilibrative nucleoside transporter 3 (ENT3), the only intracellular nucleoside transporter within the solute carrier 29 (SLC29) gene family, cause an expanding spectrum of human genetic disorders (e.g., H syndrome, PHID syndrome, and SHML/RDD syndrome). Here, we identify adult stem cell deficits that drive ENT3-related abnormalities in mice. ENT3 deficiency alters hematopoietic and mesenchymal stem cell fates; the former leads to stem cell exhaustion, and the latter leads to breaches of mesodermal tissue integrity. The molecular pathogenesis stems from the loss of lysosomal adenosine transport, which impedes autophagy-regulated stem cell differentiation programs via misregulation of the AMPK-mTOR-ULK axis. Furthermore, mass spectrometry-based metabolomics and bioenergetics studies identify defects in fatty acid utilization, and alterations in mitochondrial bioenergetics can additionally propel stem cell deficits. Genetic, pharmacologic and stem cell interventions ameliorate ENT3-disease pathologies and extend the lifespan of ENT3-deficient mice. These findings delineate a primary pathogenic basis for the development of ENT3 spectrum disorders and offer critical mechanistic insights into treating human ENT3-related disorders.
突变仅存在于平衡核苷转运蛋白 3(ENT3)中,ENT3 是溶质载体 29(SLC29)基因家族中唯一的细胞内核苷转运蛋白,可导致一系列人类遗传疾病(例如,H 综合征、PHID 综合征和 SHML/RDD 综合征)。在这里,我们确定了驱动 ENT3 相关异常的成年干细胞缺陷。ENT3 缺乏会改变造血和间充质干细胞的命运;前者导致干细胞衰竭,后者导致中胚层组织完整性的破坏。分子发病机制源于溶酶体腺苷转运的丧失,通过 AMPK-mTOR-ULK 轴的失调,阻碍了自噬调节的干细胞分化程序。此外,基于质谱的代谢组学和生物能量学研究鉴定出脂肪酸利用缺陷,以及线粒体生物能量学改变,这也会进一步导致干细胞缺陷。遗传、药物和干细胞干预可改善 ENT3 疾病病理,并延长 ENT3 缺陷小鼠的寿命。这些发现描绘了 ENT3 谱疾病发展的主要致病基础,并为治疗人类 ENT3 相关疾病提供了重要的机制见解。