Cruz-Gandarilla F, Bolmaro R E, Mendoza-León H F, Salcedo-Garrido A M, Cabañas-Moreno J G
Escuela Superior Física y Matemáticas (ESFM), Instituto Politécnico Nacional, Ciudad de México, México.
Instituto de Física Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
J Microsc. 2019 Sep;275(3):133-148. doi: 10.1111/jmi.12822. Epub 2019 Aug 8.
Many metallurgical processes produce characteristic dislocation accumulation, with heterogeneous spatial and orientation distributions and further development of microstructures after heat treatment. Recovery and recrystallisation behaviours are direct consequences of those uneven dislocation distributions. The Electron BackScatter Diffraction (EBSD) technique can be used for the characterisation of such microstructural features, including: Density of Geometrically Necessary Dislocations (GND), Kernel Average Misorientations (KAM), Grain Orientation Spread (GOS), Grain Average Misorientation (GAM), Grain Reference Orientation Deviation (GROD - Angle) and GOS/D, where D is an assumed characteristic grain length. Production of Fe3%Si alloys with a Goss texture, essential step in the manufacture of electrical transformers, requires several different processing stages, including the one called primary recrystallisation, a key process preceding abnormal grain growth. The structure of grains and different microstructural aspects of the recrystallisation stage will provide the conditions for development of the Goss orientation during abnormal grain growth. In the present work we use GOS, GAM, GROD, GOS/D, GND and KAM, calculated from EBSD scans performed on cold rolled Fe3%Si alloys subject to increasing heat treatment times, to characterise the kinetics of recovery and primary recrystallisation in an Fe3%Si alloy. Difficulties in the interpretation of these results may arise from the interactive competition between various microstructural features. Hardness measurements were also performed in order to validate recovery and recrystallisation evolution by classical methods. It was found that the global GOS (i.e. including grains of all orientations) shows changes which can be related to those observed in the hardness for high annealing temperatures but it is not sensitive to microstructure evolution occurring at low temperatures. Meanwhile, GND undergoes changes at all annealing temperatures and, remarkably, it responds to the recovery that GOS cannot detect at low temperatures. The GAM parameter seems to follow better the microhardness results. When grains belonging to different texture components are analysed, gamma fibre grains are the first to recrystallise and alpha fibre grains the last. LAY DESCRIPTION: Many metallurgical processes produce characteristic dislocation accumulation, with heterogeneous spatial and orientation distributions. Further development of such microstructures occurs with subsequent heat treatments. Recovery and recrystallisation behaviours are directly affected by consequences of those uneven dislocation distributions. The Electron Back Scatter Diffraction (EBSD) technique can be used for the characterisation of such microstructural features using different magnitudes that describe locally or globally misorientations between various locations in the material. In search of the best parameters [among them: Density of Geometrically Necessary Dislocations (GND), Kernel Average Misorientations (KAM), Grain Orientation Spread (GOS), Grain Average Misorientation (GAM), Grain Reference Orientation Deviation (GROD - Angle) and GOS/D, where D is an assumed characteristic grain length], we characterised the kinetics of the recovery during the 1st recrystallisation in an Fe3%Si alloy. It was found that the global GOS (i.e. including grains of all orientations) shows changes that can be related to the advance of recrystallisation on the other hand, the GND (KAM, GAM etc.) parameter seems to better follow the progress of recovery phenomenon. When grains belonging to different texture components are analysed, gamma fibre grains are the first to recrystallise and alpha fibre grains the last.
许多冶金过程会产生具有特征性的位错堆积,其空间和取向分布不均匀,并且在热处理后微观结构会进一步发展。回复和再结晶行为是这些不均匀位错分布的直接结果。电子背散射衍射(EBSD)技术可用于表征此类微观结构特征,包括:几何必要位错(GND)密度、内核平均取向差(KAM)、晶粒取向展宽(GOS)、晶粒平均取向差(GAM)、晶粒参考取向偏差(GROD - 角度)以及GOS/D,其中D是假定的特征晶粒长度。生产具有高斯织构的Fe3%Si合金是制造电力变压器的关键步骤,需要几个不同的加工阶段,包括所谓的初次再结晶,这是异常晶粒长大之前的一个关键过程。再结晶阶段的晶粒结构和不同的微观结构方面将为异常晶粒长大过程中高斯取向的发展提供条件。在本工作中,我们使用从对经过不同热处理时间的冷轧Fe3%Si合金进行EBSD扫描计算得到的GOS、GAM、GROD、GOS/D、GND和KAM来表征Fe3%Si合金中回复和初次再结晶的动力学。这些结果的解释困难可能源于各种微观结构特征之间的相互竞争。还进行了硬度测量,以便用经典方法验证回复和再结晶的演变。结果发现,全局GOS(即包括所有取向的晶粒)显示出的变化与在高退火温度下硬度变化相关,但对低温下发生的微观结构演变不敏感。同时,GND在所有退火温度下都会发生变化,并且值得注意的是,它对低温下GOS无法检测到的回复有响应。GAM参数似乎更符合显微硬度结果。当分析属于不同织构组分的晶粒时,γ纤维晶粒最先再结晶,α纤维晶粒最后再结晶。层次描述:许多冶金过程会产生具有特征性的位错堆积,其空间和取向分布不均匀。随后的热处理会使此类微观结构进一步发展。回复和再结晶行为直接受到那些不均匀位错分布结果的影响。电子背散射衍射(EBSD)技术可用于使用描述材料中不同位置之间局部或全局取向差的不同量来表征此类微观结构特征。在寻找最佳参数(其中包括:几何必要位错(GND)密度、内核平均取向差(KAM)、晶粒取向展宽(GOS)、晶粒平均取向差(GAM)、晶粒参考取向偏差(GROD - 角度)以及GOS/D,其中D是假定的特征晶粒长度)时,我们表征了Fe3%Si合金初次再结晶过程中的回复动力学。结果发现,全局GOS(即包括所有取向的晶粒)显示出的变化与再结晶的进展相关,另一方面,GND(KAM、GAM等)参数似乎更能跟踪回复现象的进展。当分析属于不同织构组分的晶粒时,γ纤维晶粒最先再结晶,α纤维晶粒最后再结晶。