Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
Int J Biol Macromol. 2019 Sep 15;137:382-391. doi: 10.1016/j.ijbiomac.2019.06.245. Epub 2019 Jul 2.
Tissue engineering is a promising strategy for cartilage repair and regeneration. However, an ideal scaffolding material that not only mimics the biomechanical properties of the native cartilage, but also supports the chondrogenic phenotype of the seeding cells is in need. In this study, we developed a silk fibroin (SF) and carboxymethyl chitosan (CMCS) composite hydrogel with enzymatic cross-links (horseradish peroxidase and hydrogen peroxide) and β-sheet cross-links (ethanol treatment). Results of Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), and X-ray diffraction (XRD) verified that SF/CMCS composite hydrogels had a tunable β-sheet structure. Therefore, by increasing the time of ethanol treatment from 0 h to 8 h, a series of parameters including pore size (from 50 to 300 μm), equilibrium swelling (from 78.1 ± 2.6% to 91.9 ± 0.9%), degradation (from 100% to 9% reduction in mass over 56 days), rheological properties (storage modulus from 177 Pa to 88,904 Pa), and mechanical properties (compressive modulus from 13 to 829 kPa) of the hydrogels were adjusted. In particular, the material parameters of the hydrogels with 2 h ethanol treatment appeared most suitable for engineered cartilage. Furthermore, the in vitro cellular experiments showed that the hydrogels supported the adhesion, proliferation, glycosaminoglycan synthesis, and chondrogenic phenotype of rabbit articular chondrocytes. Finally, subcutaneous implantation of the hydrogels in mice showed no infections or local inflammatory responses, indicating a good biocompatibility in vivo. In conclusion, the chemical-physical cross-linking SF/CMCS composite hydrogels, with tunable material properties and degradation rate, good biocompatibility, are promising scaffolds for cartilage tissue engineering.
组织工程是一种有前途的软骨修复和再生策略。然而,需要一种理想的支架材料,这种材料不仅要模拟天然软骨的生物力学特性,还要支持种子细胞的软骨生成表型。在这项研究中,我们开发了一种丝素蛋白(SF)和羧甲基壳聚糖(CMCS)复合水凝胶,具有酶交联(辣根过氧化物酶和过氧化氢)和β-折叠交联(乙醇处理)。傅里叶变换红外(FTIR)、热重分析(TGA)和 X 射线衍射(XRD)的结果证实 SF/CMCS 复合水凝胶具有可调节的β-折叠结构。因此,通过增加乙醇处理时间从 0 小时增加到 8 小时,可以调节一系列参数,包括孔径(从 50μm 到 300μm)、平衡溶胀(从 78.1%±2.6%到 91.9%±0.9%)、降解(质量减少 100%至 56 天内减少 9%)、流变性能(储能模量从 177Pa 增加到 88904Pa)和机械性能(压缩模量从 13kPa 增加到 829kPa)。特别是,具有 2 小时乙醇处理的水凝胶的材料参数似乎最适合工程软骨。此外,体外细胞实验表明,水凝胶支持兔关节软骨细胞的黏附、增殖、糖胺聚糖合成和软骨生成表型。最后,水凝胶在小鼠中的皮下植入实验未显示感染或局部炎症反应,表明其具有良好的体内生物相容性。总之,具有可调材料性能和降解率、良好的生物相容性的化学-物理交联 SF/CMCS 复合水凝胶是软骨组织工程有前途的支架材料。
Mater Sci Eng C Mater Biol Appl. 2013-8-6
Int J Biol Macromol. 2018-11-26
Acta Biomater. 2018-4-5
Biomed Eng Online. 2024-9-11
Signal Transduct Target Ther. 2024-7-1
Gels. 2022-11-17
Bioengineering (Basel). 2022-8-15
Polymers (Basel). 2022-3-26
Front Bioeng Biotechnol. 2022-1-12