Suppr超能文献

基于深度卷积神经网络(DCNN)的多层面方法从磁共振图像生成合成 CT-在脑质子治疗中的应用。

Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images-Application in Brain Proton Therapy.

机构信息

Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.

Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy; Biomedical Physics in Radiation Oncology, DKFZ-Deutsches Krebsforschungszentrum, Heidelberg, Germany.

出版信息

Int J Radiat Oncol Biol Phys. 2019 Nov 1;105(3):495-503. doi: 10.1016/j.ijrobp.2019.06.2535. Epub 2019 Jul 2.

Abstract

PURPOSE

The first aim of this work is to present a novel deep convolution neural network (DCNN) multiplane approach and compare it to single-plane prediction of synthetic computed tomography (sCT) by using the real computed tomography (CT) as ground truth. The second aim is to demonstrate the feasibility of magnetic resonance imaging (MRI)-based proton therapy planning for the brain by assessing the range shift error within the clinical acceptance threshold.

METHODS AND MATERIALS

The image database included 15 pairs of MRI/CT scans of the head. Three DCNNs were trained to estimate, for each voxel, the Hounsfield unit (HU) value from MRI intensities. Each DCNN gave an estimation in the axial, sagittal, and coronal plane, respectively. The median HU among the 3 values was selected to build the sCT. The sCT/CT agreement was evaluated by a mean absolute error (MAE) and mean error, computed within the head contour and on 6 different tissues. Dice similarity coefficients were calculated to assess the geometric overlap of bone and air cavities segmentations. A 3-beam proton therapy plan was simulated for each patient. Beam-by-beam range shift (RS) analysis was conducted to assess the proton-stopping power estimation. RS analysis was performed using clinically accepted thresholds of (1) 3.5% + 1 mm and (2) 2.5% + 1.5 mm of the total range.

RESULTS

DCNN multiplane statistically outperformed single-plane prediction of sCT (P < .025). MAE and mean error within the head were 54 ± 7 HU and -4 ± 17 HU (mean ± standard deviation), respectively. Soft tissues were very close to perfect agreement (11 ± 3 HU in terms of MAE). Segmentation of air and bone regions led to a Dice similarity coefficient of 0.92 ± 0.03 and 0.93 ± 0.02, respectively. Proton RS was always below clinical acceptance thresholds, with a relative RS error of 0.14% ± 1.11%.

CONCLUSIONS

The multiplane DCNN approach significantly improved the sCT prediction compared with other DCNN methods presented in the literature. The method was demonstrated to be highly accurate for MRI-only proton planning purposes.

摘要

目的

本研究的首要目的是提出一种新的深度卷积神经网络(DCNN)多层面方法,并将其与使用真实计算机断层扫描(CT)作为基准的单层面预测合成计算机断层扫描(sCT)进行比较。第二个目的是通过评估临床可接受阈值内的射程偏移误差,证明基于磁共振成像(MRI)的质子治疗计划用于大脑的可行性。

方法与材料

图像数据库包括 15 对头部的 MRI/CT 扫描。训练了三个 DCNN 来估计每个体素的 MRI 强度的亨氏单位(HU)值。每个 DCNN 分别在轴位、矢状位和冠状位给出估计值。选择 3 个值的中位数作为构建 sCT 的依据。通过在头部轮廓内和 6 种不同组织上计算平均绝对误差(MAE)和平均误差来评估 sCT/CT 的一致性。计算 Dice 相似系数来评估骨和空气腔的分割的几何重叠。对每位患者模拟了三个射束的质子治疗计划。对每个射束进行射程偏移(RS)分析,以评估质子停止能力的估计值。使用临床可接受的(1)3.5%+1mm 和(2)2.5%+1.5mm 的总射程阈值进行 RS 分析。

结果

DCNN 多层面方法在统计学上优于 sCT 的单层面预测(P<0.025)。头部内的 MAE 和平均误差分别为 54±7HU 和-4±17HU(均值±标准差)。软组织非常接近完全一致(MAE 为 11±3HU)。空气和骨区域的分割导致 Dice 相似系数分别为 0.92±0.03 和 0.93±0.02。质子 RS 始终低于临床可接受的阈值,相对 RS 误差为 0.14%±1.11%。

结论

与文献中提出的其他 DCNN 方法相比,多层面 DCNN 方法显著提高了 sCT 预测的准确性。该方法被证明非常适合用于 MRI 引导的质子治疗计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验