Suppr超能文献

将机器学习应用于质子放射治疗的最新进展。

Recent advances in applying machine learning to proton radiotherapy.

作者信息

Wildman Vanessa L, Wynne Jacob F, Momin Shadab, Kesarwala Aparna H, Yang Xiaofeng

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America.

出版信息

Biomed Phys Eng Express. 2025 Jul 23;11(4):042005. doi: 10.1088/2057-1976/adeb90.

Abstract

.: In radiation oncology, precision and timeliness of both planning and treatment are paramount values of patient care. Machine learning has increasingly been applied to various aspects of photon radiotherapy to reduce manual error and improve the efficiency of clinical decision making; however, applications to proton therapy remain an emerging field in comparison. This systematic review aims to comprehensively cover all current and potential applications of machine learning to the proton therapy clinical workflow, an area that has not been extensively explored in literature.: PubMed and Embase were utilized to identify studies pertinent to machine learning in proton therapy between 2019 to 2024. An initial search on PubMed was made with the search strategy ''proton therapy', 'machine learning', 'deep learning''. A subsequent search on Embase was made with '('proton therapy') AND ('machine learning' OR 'deep learning')'. In total, 38 relevant studies have been summarized and incorporated.: It is observed that U-Net architectures are prevalent in the patient pre-screening process, while convolutional neural networks play an important role in dose and range prediction. Both image quality improvement and transformation between modalities to decrease extraneous radiation are popular targets of various models. To adaptively improve treatments, advanced architectures such as general deep inception or deep cascaded convolution neural networks improve online dose verification and range monitoring.: With the rising clinical usage of proton therapy, machine learning models have been increasingly proposed to facilitate both treatment and discovery. Significantly improving patient screening, planning, image quality, and dose and range calculation, machine learning is advancing the precision and personalization of proton therapy.

摘要

在放射肿瘤学中,计划和治疗的精确性与及时性是患者护理的首要价值。机器学习已越来越多地应用于光子放射治疗的各个方面,以减少人为误差并提高临床决策效率;然而,相比之下,其在质子治疗中的应用仍是一个新兴领域。本系统综述旨在全面涵盖机器学习在质子治疗临床工作流程中的所有当前及潜在应用,这一领域在文献中尚未得到广泛探索。利用PubMed和Embase检索2019年至2024年间与质子治疗中机器学习相关的研究。在PubMed上最初的检索策略为“质子治疗”、“机器学习”、“深度学习”。随后在Embase上的检索策略为“(质子治疗)AND(机器学习或深度学习)”。总共总结并纳入了38项相关研究。观察发现,U-Net架构在患者预筛查过程中很普遍,而卷积神经网络在剂量和射程预测中发挥着重要作用。提高图像质量以及在不同模态之间进行转换以减少额外辐射是各种模型的常见目标。为了自适应地改进治疗,诸如通用深度卷积或深度级联卷积神经网络等先进架构可改善在线剂量验证和射程监测。随着质子治疗临床应用的增加,越来越多的机器学习模型被提出以促进治疗和探索。机器学习显著改善了患者筛查、计划、图像质量以及剂量和射程计算,正在推动质子治疗的精确性和个性化发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d4/12284894/9a8daad9ad82/bpexadeb90f1_hr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验