Department of Radiation Oncology, Jiangxi Cancer Hospital, 330029, Nanchang, Jiangxi, PR China.
The Second Affiliated Hospital of Nanchang Medical College, 330029, Nanchang, Jiangxi, PR China.
Radiat Oncol. 2024 Mar 14;19(1):37. doi: 10.1186/s13014-024-02429-2.
Magnetic resonance imaging (MRI) plays an increasingly important role in radiotherapy, enhancing the accuracy of target and organs at risk delineation, but the absence of electron density information limits its further clinical application. Therefore, the aim of this study is to develop and evaluate a novel unsupervised network (cycleSimulationGAN) for unpaired MR-to-CT synthesis.
The proposed cycleSimulationGAN in this work integrates contour consistency loss function and channel-wise attention mechanism to synthesize high-quality CT-like images. Specially, the proposed cycleSimulationGAN constrains the structural similarity between the synthetic and input images for better structural retention characteristics. Additionally, we propose to equip a novel channel-wise attention mechanism based on the traditional generator of GAN to enhance the feature representation capability of deep network and extract more effective features. The mean absolute error (MAE) of Hounsfield Units (HU), peak signal-to-noise ratio (PSNR), root-mean-square error (RMSE) and structural similarity index (SSIM) were calculated between synthetic CT (sCT) and ground truth (GT) CT images to quantify the overall sCT performance.
One hundred and sixty nasopharyngeal carcinoma (NPC) patients who underwent volumetric-modulated arc radiotherapy (VMAT) were enrolled in this study. The generated sCT of our method were more consistent with the GT compared with other methods in terms of visual inspection. The average MAE, RMSE, PSNR, and SSIM calculated over twenty patients were 61.88 ± 1.42, 116.85 ± 3.42, 36.23 ± 0.52 and 0.985 ± 0.002 for the proposed method. The four image quality assessment metrics were significantly improved by our approach compared to conventional cycleGAN, the proposed cycleSimulationGAN produces significantly better synthetic results except for SSIM in bone.
We developed a novel cycleSimulationGAN model that can effectively create sCT images, making them comparable to GT images, which could potentially benefit the MRI-based treatment planning.
磁共振成像(MRI)在放射治疗中发挥着越来越重要的作用,提高了靶区和危及器官勾画的准确性,但缺乏电子密度信息限制了其进一步的临床应用。因此,本研究旨在开发和评估一种新的无监督网络(cycleSimulationGAN),用于非配对的 MR 到 CT 合成。
本研究提出的 cycleSimulationGAN 集成了轮廓一致性损失函数和通道注意力机制,以合成高质量的 CT 样图像。特别地,所提出的 cycleSimulationGAN 约束了合成图像和输入图像之间的结构相似性,以更好地保留结构特征。此外,我们提出在传统的 GAN 生成器中配备一种新的通道注意力机制,以增强深度网络的特征表示能力,并提取更有效的特征。通过计算合成 CT(sCT)和真实 CT(GT)图像之间的平均绝对误差(MAE)、峰值信噪比(PSNR)、均方根误差(RMSE)和结构相似性指数(SSIM)来量化整体 sCT 性能。
本研究共纳入了 160 例接受容积调强弧形放疗(VMAT)的鼻咽癌(NPC)患者。从视觉检查的角度来看,与其他方法相比,我们的方法生成的 sCT 与 GT 更为一致。在 20 名患者中计算得到的平均 MAE、RMSE、PSNR 和 SSIM 分别为 61.88±1.42、116.85±3.42、36.23±0.52 和 0.985±0.002。与传统的 cycleGAN 相比,我们的方法在四个图像质量评估指标上都有显著提高,除了骨骼的 SSIM 外,我们的方法生成的 sCT 效果也显著优于传统 cycleGAN 方法。
我们开发了一种新的 cycleSimulationGAN 模型,能够有效地生成 sCT 图像,使其与 GT 图像相媲美,这可能有助于基于 MRI 的治疗计划。