Nicholls Luke H, Stefaniuk Tomasz, Nasir Mazhar E, Rodríguez-Fortuño Francisco J, Wurtz Gregory A, Zayats Anatoly V
Department of Physics and London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK.
Department of Physics, University of Warsaw, 00-927, Warsaw, Poland.
Nat Commun. 2019 Jul 4;10(1):2967. doi: 10.1038/s41467-019-10840-7.
While free electrons in metals respond to ultrafast excitation with refractive index changes on femtosecond time scales, typical relaxation mechanisms occur over several picoseconds, governed by electron-phonon energy exchange rates. Here, we propose tailoring these intrinsic rates by engineering a non-uniform electron temperature distribution through nanostructuring, thus, introducing an additional electron temperature relaxation channel. We experimentally demonstrate a sub-300 fs switching time due to the wavelength dependence of the induced hot electron distribution in the nanostructure. The speed of switching is determined by the rate of redistribution of the inhomogeneous electron temperature and not just the rate of heat exchange between electrons and phonons. This effect depends on both the spatial overlap between control and signal fields in the metamaterial and hot-electron diffusion effects. Thus, switching rates can be controlled in nanostructured systems by designing geometrical parameters and selecting wavelengths, which determine the control and signal mode distributions.
虽然金属中的自由电子在飞秒时间尺度上通过折射率变化对超快激发做出响应,但典型的弛豫机制发生在几皮秒的时间内,由电子 - 声子能量交换速率决定。在此,我们提出通过纳米结构工程来调控这些本征速率,即通过构建非均匀电子温度分布,从而引入一个额外的电子温度弛豫通道。我们通过实验证明,由于纳米结构中诱导热电子分布的波长依赖性,开关时间低于300飞秒。开关速度由非均匀电子温度的重新分布速率决定,而不仅仅是电子与声子之间的热交换速率。这种效应取决于超材料中控制场与信号场之间的空间重叠以及热电子扩散效应。因此,通过设计几何参数和选择波长,可以在纳米结构系统中控制开关速率,这些参数决定了控制场和信号模式分布。