Suppr超能文献

具有热点的纳米结构中热等离子体电子的反常超快动力学。

Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.

机构信息

Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.

Department of Physics, Emory University, Atlanta, Georgia 30322, USA.

出版信息

Nat Nanotechnol. 2015 Sep;10(9):770-4. doi: 10.1038/nnano.2015.165. Epub 2015 Aug 3.

Abstract

The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few picoseconds. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal. Here, we report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. We then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices.

摘要

金属纳米系统中光与物质的相互作用是通过表面电子的集体振荡来介导的,这种集体振荡被称为等离子体激元。在被激发后,等离子体激元通过带间和带内跃迁被金属电子吸收,从而产生高度非热的电子分布。然后,电子通过电子-电子相互作用衰减,在几百飞秒内产生热电子分布,然后通过电子-声子散射在几皮秒的时间尺度上进一步弛豫。在光谱域中,热等离子体电子通过改变金属的介电常数来诱导纳米结构的等离子体共振发生变化。在这里,我们报告了在混合金属/氧化物纳米结构中观察到的这些被激发的热等离子体电子的超快时间和光谱响应的异常强变化,这是由于纳米结构的几何形状和组成以及激发波长的变化。特别是,我们在含有热点的混合纳米结构中显示了一个大的超快、脉冲宽度限制的贡献到激发电子衰减信号。这个贡献的强度与高激发表面电子的产生效率相关。使用理论模型,我们将这种效应归因于热点处热等离子体电子的产生。然后,我们通过具体设计的等离子体纳米结构来开发增强高能电子产生的一般原理,这些纳米结构可以用于热电子产生有益的应用,例如太阳能光催化、光电探测器和非线性器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验