Schirato Andrea, Maiuri Margherita, Cerullo Giulio, Della Valle Giuseppe
Dipartimento di Fisica - Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy.
Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
Nanophotonics. 2023 Jan 12;12(1):1-28. doi: 10.1515/nanoph-2022-0592. eCollection 2023 Jan.
Metallic nanostructures exhibit localized surface plasmons (LSPs), which offer unprecedented opportunities for advanced photonic materials and devices. Following resonant photoexcitation, LSPs quickly dephase, giving rise to a distribution of energetic 'hot' electrons in the metal. These out-of-equilibrium carriers undergo ultrafast internal relaxation processes, nowadays pivotal in a variety of applications, from photodetection and sensing to the driving of photochemical reactions and ultrafast all-optical modulation of light. Despite the intense research activity, exploitation of hot carriers for real-world nanophotonic devices remains extremely challenging. This is due to the complexity inherent to hot carrier relaxation phenomena at the nanoscale, involving short-lived out-of-equilibrium electronic states over a very broad range of energies, in interaction with thermal electronic and phononic baths. These issues call for a comprehensive understanding of ultrafast hot electron dynamics in plasmonic nanostructures. This paper aims to review our contribution to the field: starting from the fundamental physics of plasmonic nanostructures, we first describe the experimental techniques used to probe hot electrons; we then introduce a numerical model of ultrafast nanoscale relaxation processes, and present examples in which experiments and modelling are combined, with the aim of designing novel optical functionalities enabled by ultrafast hot-electron dynamics.
金属纳米结构表现出局域表面等离子体激元(LSPs),这为先进的光子材料和器件提供了前所未有的机遇。在共振光激发之后,LSPs迅速退相,在金属中产生高能“热”电子的分布。这些非平衡载流子经历超快的内部弛豫过程,如今这在从光探测和传感到光化学反应驱动以及光的超快全光调制等各种应用中至关重要。尽管有大量的研究活动,但将热载流子用于实际的纳米光子器件仍然极具挑战性。这是由于纳米尺度上热载流子弛豫现象固有的复杂性,涉及在非常宽的能量范围内的短寿命非平衡电子态,以及与热电子和声子库的相互作用。这些问题需要对等离子体纳米结构中的超快热电子动力学有全面的理解。本文旨在综述我们在该领域的贡献:从等离子体纳米结构的基础物理出发,我们首先描述用于探测热电子的实验技术;然后我们介绍超快纳米尺度弛豫过程的数值模型,并给出实验与建模相结合的例子,目的是设计由超快热电子动力学实现的新型光学功能。