Suppr超能文献

使用基于测序的DNA标记快速鉴定苹果(×博尔克.)等位基因

Rapid identification of apple (× Borkh.) alleles using sequencing-based DNA marker .

作者信息

Kasajima Ichiro, Kikuchi Teppei, Yoshikawa Nobuyuki

机构信息

Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan.

出版信息

Plant Biotechnol (Tokyo). 2017;34(2):97-106. doi: 10.5511/plantbiotechnology.17.0503a. Epub 2017 Jun 28.

Abstract

All apple cultivars harbor the trait called self-incompatibility. Self-incompatibility represents that the pistils of the flowers are not successfully fertilized with own, the same cultivar's pollens. Compatibility or incompatibility of apple flowers are determined by alleles. For example, the most popular apple cultivar 'Fuji' possesses the and alleles ( ). Thus, 'Fuji' is incompatible with cultivars, but is compatible with the cultivars possessing different combinations of alleles such as and . Apple alleles have been identified by performing a series of allele-specific PCR amplifications, to detect more than ten different alleles separately. Here, we developed a new type of sequencing-based DNA marker of the apple gene, which identifies alleles. This DNA marker was named (apple -allele identifier). A 53-base region in the first coding sequence of is the target of sequencing. Variation in nucleotide sequences in this sequence enables allele identifications. This region is amplified from apple genomic DNA by using a pair of degenerate primers. The forward primer is attached with 'DS5 adaptor.' After PCR amplification, electrophoresis and gel extraction of 177-bp DNA fragments, sequence is determined by direct sequencing with a sequencing primer. The sequences of 20 apple cultivars completely matched their alleles, which include triploid cultivars. In conclusion, identifies apple alleles ( , , , , , , , , , , , , and , so far) just by a single sequencing analysis.

摘要

所有苹果品种都具有自交不亲和这一特性。自交不亲和是指花朵的雌蕊不能被自身、同一品种的花粉成功受精。苹果花的亲和性或不亲和性由等位基因决定。例如,最受欢迎的苹果品种“富士”拥有S1和S2等位基因(S1S2)。因此,“富士”与具有S1或S2等位基因的品种不亲和,但与具有不同S等位基因组合(如S3S4和S5S6)的品种亲和。通过进行一系列等位基因特异性PCR扩增,已鉴定出苹果的S等位基因,可分别检测出十多种不同的S等位基因。在此,我们开发了一种基于测序的新型苹果S基因DNA标记,用于鉴定S等位基因。这种DNA标记被命名为S - ID(苹果S等位基因标识符)。S基因第一个编码序列中的一个53碱基区域是S测序的目标。该S序列中核苷酸序列的变异能够实现等位基因鉴定。通过使用一对简并引物从苹果基因组DNA中扩增该区域。正向引物连接有“DS5接头”。PCR扩增、电泳以及对177碱基对DNA片段进行凝胶提取后,用测序引物直接测序确定S序列。20个苹果品种的S序列与它们的S等位基因完全匹配,其中包括三倍体品种。总之,S - ID仅通过一次测序分析就能鉴定苹果的S等位基因(到目前为止有S1、S2、S3、S4、S5、S6、S7、S8、S9、S10、S11、S12、S13和S14)。

相似文献

本文引用的文献

7
Self-fertile apple resulting from S-RNase gene silencing.由S-RNase基因沉默产生的自花可育苹果。
Plant Cell Rep. 2004 Feb;22(7):497-501. doi: 10.1007/s00299-003-0716-4. Epub 2003 Oct 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验