Karetin Yuriy A, Kalitnik Aleksandra A, Safonova Alina E, Cicinskas Eduardas
National Scientific Center of Marine Biology of Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia.
Far Eastern Federal University, Vladivostok, Russia.
PeerJ. 2019 Jun 21;7:e7056. doi: 10.7717/peerj.7056. eCollection 2019.
The fractal formalism in combination with linear image analysis enables statistically significant description and classification of "irregular" (in terms of Euclidean geometry) shapes, such as, outlines of flattened cells. We developed an optimal model for classifying bivalve and immune cells, based on evaluating their linear and non-linear morphological features: size characteristics (area, perimeter), various parameters of cell bounding circle, convex hull, cell symmetry, roundness, and a number of fractal dimensions and lacunarities evaluating the spatial complexity of cells. Proposed classification model is based on Ward's clustering method, loaded with highest multimodality index factors. This classification scheme groups cells into three morphological types, which can be distinguished both visually and by several linear and quasi-fractal parameters.
分形形式主义与线性图像分析相结合,能够对“不规则”(从欧几里得几何角度而言)形状进行具有统计学意义的描述和分类,例如扁平细胞的轮廓。我们基于评估双壳类和免疫细胞的线性和非线性形态特征,开发了一种最优分类模型:尺寸特征(面积、周长)、细胞外接圆的各种参数、凸包、细胞对称性、圆度,以及一些评估细胞空间复杂性的分形维数和孔隙率。所提出的分类模型基于沃德聚类方法,并加载了最高多峰指数因子。这种分类方案将细胞分为三种形态类型,在视觉上以及通过一些线性和准分形参数都可以区分。