Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico.
CIDS-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico.
Sci Rep. 2017 Jun 14;7(1):3523. doi: 10.1038/s41598-017-03491-5.
Stochastic growth processes give rise to diverse and intricate structures everywhere in nature, often referred to as fractals. In general, these complex structures reflect the non-trivial competition among the interactions that generate them. In particular, the paradigmatic Laplacian-growth model exhibits a characteristic fractal to non-fractal morphological transition as the non-linear effects of its growth dynamics increase. So far, a complete scaling theory for this type of transitions, as well as a general analytical description for their fractal dimensions have been lacking. In this work, we show that despite the enormous variety of shapes, these morphological transitions have clear universal scaling characteristics. Using a statistical approach to fundamental particle-cluster aggregation, we introduce two non-trivial fractal to non-fractal transitions that capture all the main features of fractal growth. By analyzing the respective clusters, in addition to constructing a dynamical model for their fractal dimension, we show that they are well described by a general dimensionality function regardless of their space symmetry-breaking mechanism, including the Laplacian case itself. Moreover, under the appropriate variable transformation this description is universal, i.e., independent of the transition dynamics, the initial cluster configuration, and the embedding Euclidean space.
随机生长过程在自然界的各个地方产生出多样而复杂的结构,通常被称为分形。一般来说,这些复杂的结构反映了生成它们的相互作用之间非平凡的竞争。特别是,典范的拉普拉斯生长模型表现出特征性的分形到非分形形态转变,因为其生长动力学的非线性效应增加。到目前为止,这种类型的转变还缺乏完整的标度理论以及其分形维数的一般分析描述。在这项工作中,我们表明,尽管形状千差万别,但这些形态转变具有明显的普遍标度特征。我们使用一种基本粒子-团簇聚集的统计方法,引入了两个非平凡的分形到非分形转变,这些转变捕捉到了分形生长的所有主要特征。通过分析相应的团簇,除了构建它们的分形维数的动力学模型外,我们还表明,无论它们的空间对称性破缺机制如何,包括拉普拉斯本身的情况,它们都可以通过一个通用的维度函数很好地描述。此外,在适当的变量变换下,这种描述是普遍的,即与转变动力学、初始团簇配置和嵌入欧几里得空间无关。