Suppr超能文献

Nrf2 通过 Bmp6 和 hepcidin 控制血色素沉着症和地中海贫血中的铁稳态。

Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin.

机构信息

MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.

Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.

出版信息

Nat Metab. 2019 May;1(5):519-531. doi: 10.1038/s42255-019-0063-6. Epub 2019 May 13.

Abstract

Iron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The Nrf2 transcription factor orchestrates cell-intrinsic protective antioxidant responses, and the peptide hormone hepcidin maintains systemic iron homeostasis, but is pathophysiologically decreased in haemochromatosis and beta-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives Bmp6 expression in liver sinusoid endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes. In Nrf2 knockout mice, the Bmp6-hepcidin response to oral and parenteral iron is impaired and iron accumulation and hepatic damage are increased. Pharmacological activation of Nrf2 stimulates the Bmp6-hepcidin axis, improving iron homeostasis in haemochromatosis and counteracting the inhibition of Bmp6 by erythroferrone in beta-thalassaemia. We propose that Nrf2 links cellular sensing of excess toxic iron to control of systemic iron homeostasis and antioxidant responses, and may be a therapeutic target for iron-associated disorders.

摘要

铁对生命至关重要,但过量则具有毒性,因为铁催化了促氧化剂的形成,而这些促氧化剂会在一系列疾病中导致组织损伤。Nrf2 转录因子协调细胞内固有抗氧化保护反应,而肽激素铁调素维持全身铁平衡,但在血色病和β-地中海贫血中病理生理性降低。在这里,我们表明 Nrf2 被铁诱导的线粒体来源的促氧化剂激活,并在肝窦内皮细胞中驱动 Bmp6 的表达,进而增加相邻肝细胞中铁调素的合成。在 Nrf2 敲除小鼠中,口服和静脉铁对 Bmp6-铁调素反应受损,铁积累和肝损伤增加。Nrf2 的药理学激活刺激 Bmp6-铁调素轴,改善血色病中的铁平衡,并抵消β-地中海贫血中铁调素的抑制作用。我们提出,Nrf2 将细胞对过量毒性铁的感应与全身铁平衡和抗氧化反应的控制联系起来,可能是与铁相关疾病的治疗靶点。

相似文献

1
Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin.
Nat Metab. 2019 May;1(5):519-531. doi: 10.1038/s42255-019-0063-6. Epub 2019 May 13.
2
NRF2 and Hypoxia-Inducible Factors: Key Players in the Redox Control of Systemic Iron Homeostasis.
Antioxid Redox Signal. 2021 Aug 20;35(6):433-452. doi: 10.1089/ars.2020.8148. Epub 2020 Nov 10.
3
Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice.
Blood. 2017 Jan 26;129(4):405-414. doi: 10.1182/blood-2016-06-721571. Epub 2016 Nov 18.
4
Iron-triggered signaling via ETS1 and the p38/JNK MAPK pathway regulates Bmp6 expression.
Am J Hematol. 2024 Apr;99(4):543-554. doi: 10.1002/ajh.27223. Epub 2024 Jan 31.
5
Functional role of endothelial transferrin receptor 1 in iron sensing and homeostasis.
Am J Hematol. 2022 Dec;97(12):1548-1559. doi: 10.1002/ajh.26716. Epub 2022 Sep 26.
6
BMP5 contributes to hepcidin regulation and systemic iron homeostasis in mice.
Blood. 2023 Oct 12;142(15):1312-1322. doi: 10.1182/blood.2022019195.
7
The role of hepatocyte hemojuvelin in the regulation of bone morphogenic protein-6 and hepcidin expression in vivo.
J Biol Chem. 2010 May 28;285(22):16416-23. doi: 10.1074/jbc.M110.109488. Epub 2010 Apr 2.
10

引用本文的文献

1
Iron metabolism and ferroptosis in human health and disease.
BMC Biol. 2025 Aug 22;23(1):263. doi: 10.1186/s12915-025-02378-6.
2
Control of Systemic Iron Homeostasis: Insights Gained from Studying Mouse Models.
Adv Exp Med Biol. 2025;1480:103-118. doi: 10.1007/978-3-031-92033-2_8.
3
Evidence for alcohol-mediated hemolysis and erythrophagocytosis.
Redox Biol. 2025 Jun 26;85:103742. doi: 10.1016/j.redox.2025.103742.
4
Ferroptosis in acute liver Failure: Unraveling the hepcidin-ferroportin axis and therapeutic interventions.
Redox Biol. 2025 Jul;84:103657. doi: 10.1016/j.redox.2025.103657. Epub 2025 May 8.
6
Evaluated NSUN3 in reticulocytes from HbH-CS disease that reflects cellular stress in erythroblasts.
Ann Hematol. 2025 Apr;104(4):2207-2219. doi: 10.1007/s00277-025-06359-1. Epub 2025 Apr 17.
7
HFE-Related Hemochromatosis May Be a Primary Kupffer Cell Disease.
Biomedicines. 2025 Mar 10;13(3):683. doi: 10.3390/biomedicines13030683.
9
Thirty years of NRF2: advances and therapeutic challenges.
Nat Rev Drug Discov. 2025 Mar 4. doi: 10.1038/s41573-025-01145-0.
10
Redox imbalance drives magnetic property and function changes in mice.
Redox Biol. 2025 Apr;81:103561. doi: 10.1016/j.redox.2025.103561. Epub 2025 Feb 21.

本文引用的文献

1
A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling.
Nature. 2018 Oct;562(7728):600-604. doi: 10.1038/s41586-018-0622-0. Epub 2018 Oct 15.
2
Modulating NRF2 in Disease: Timing Is Everything.
Annu Rev Pharmacol Toxicol. 2019 Jan 6;59:555-575. doi: 10.1146/annurev-pharmtox-010818-021856. Epub 2018 Sep 26.
3
Intravenous Irons: From Basic Science to Clinical Practice.
Pharmaceuticals (Basel). 2018 Aug 27;11(3):82. doi: 10.3390/ph11030082.
4
Erythroferrone inhibits the induction of hepcidin by BMP6.
Blood. 2018 Oct 4;132(14):1473-1477. doi: 10.1182/blood-2018-06-857995. Epub 2018 Aug 10.
5
Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation.
J Biol Chem. 2018 May 11;293(19):7315-7328. doi: 10.1074/jbc.RA117.001254. Epub 2018 Mar 29.
6
Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.
Nature. 2018 Apr 5;556(7699):113-117. doi: 10.1038/nature25986. Epub 2018 Mar 28.
7
Ineffective Erythropoiesis: Anemia and Iron Overload.
Hematol Oncol Clin North Am. 2018 Apr;32(2):213-221. doi: 10.1016/j.hoc.2017.11.009. Epub 2017 Dec 29.
8
Iron-induced generation of mitochondrial ROS depends on AMPK activity.
Biometals. 2017 Aug;30(4):623-628. doi: 10.1007/s10534-017-0023-0. Epub 2017 Jun 12.
9
A Red Carpet for Iron Metabolism.
Cell. 2017 Jan 26;168(3):344-361. doi: 10.1016/j.cell.2016.12.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验