Suppr超能文献

具有太赫兹波段可调高性能隐身特性的可压缩高稳定性三维多孔MXene/氧化石墨烯泡沫材料。

Compressible Highly Stable 3D Porous MXene/GO Foam with a Tunable High-Performance Stealth Property in the Terahertz Band.

作者信息

Ma Wenle, Chen Honghui, Hou Shengyue, Huang Zhiyu, Huang Yi, Xu Shitong, Fan Fei, Chen Yongsheng

出版信息

ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25369-25377. doi: 10.1021/acsami.9b03406. Epub 2019 Jul 5.

Abstract

In this work, a three-dimensional (3D) porous MXene/GO foam (MGOF) was successfully synthesized and exhibited an excellent terahertz stealth property covering a whole measurement frequency of 0.2-2.0 THz. This is due to the ingenious assembly of two functional two-dimensional materials that have different advantages. The multiscale micro-nanostructure constructed with the 3D porous MGOF can effectively increase the terahertz scattering and refraction. Furthermore, MXene sheets with high conductivity can enhance the responsiveness to the terahertz wave. By adjusting the content of MXene in the MGOF, it exhibits a maximum reflection loss (RL) of 37 dB with a 100% qualified frequency bandwidth (RL > 10 dB), which is the most outstanding result in the available reference. In addition, the optimal average terahertz RL values of MGOF were up to 30.6 dB, which is 100% higher than the best data presented in previous work. Benefitting from an ultralow density, a high RL value, and a wide bandwidth, the maximum specific average terahertz absorption performance can reach 4.6 × 10 dB g cm, which is more than 4000 times that of other materials. In addition, the regulation of the terahertz absorption property through microstructure and morphology control is reported for the first time.

摘要

在这项工作中,成功合成了一种三维(3D)多孔MXene/氧化石墨烯泡沫(MGOF),其在0.2 - 2.0太赫兹的整个测量频率范围内表现出优异的太赫兹隐身性能。这归因于两种具有不同优势的功能性二维材料的巧妙组装。由3D多孔MGOF构建的多尺度微纳结构能够有效增加太赫兹散射和折射。此外,具有高导电性的MXene片层可增强对太赫兹波的响应性。通过调整MGOF中MXene的含量,其最大反射损耗(RL)为37 dB,合格频率带宽为100%(RL > 10 dB),这是现有参考文献中最出色的结果。此外,MGOF的最佳平均太赫兹RL值高达30.6 dB,比先前工作中呈现的最佳数据高出100%。得益于超低密度、高RL值和宽带宽,最大比平均太赫兹吸收性能可达4.6×10 dB g cm,比其他材料高出4000多倍。此外,首次报道了通过微观结构和形态控制来调节太赫兹吸收性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验