Huang Chaojun, Liang Misheng, Wang Bo, Su Ruige, Feng Yanshuo, Xing Wenqiang, Zhao Xiaoguang, Bian Xiaomeng, You Zheng, You Rui
Laboratory of Intelligent Microsystems, School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China.
Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
ACS Appl Mater Interfaces. 2024 May 22;16(20):26557-26567. doi: 10.1021/acsami.4c03055. Epub 2024 May 12.
Three-dimensional (3D) porous carbon materials have great potential for fabricating flexible tunable broadband absorbers owing to their high electrical conductivity, strong dielectric loss, and unique microstructure. Herein, we introduce an innovative method for synthesizing 3D porous graphene that incorporates advanced tuning and encapsulation processes to augment its functional efficacy. Through the modulation of both thermal and nonthermal interactions between a femtosecond (fs) laser and a polydimethylsiloxane (PDMS) film, we have synergistically fine-tuned the surface morphology and lattice properties of 3D porous graphene. This approach enabled us to create a flexible terahertz (THz) absorber with customizable characteristics, boasting an impressive absorbance range of 80%-99% in the 0.4-1.0 THz spectrum, alongside a peak reflection loss (RL) of up to 35.6 dB. Furthermore, we have successfully demonstrated the production of photoinduced 3D porous graphene within a PDMS film, which serves as both a carbon precursor and protective layer. This simplifies the conventional packaging process. These devices exhibit a RL of up to 41.6 dB and an absorption bandwidth of 2.5 THz (0.6-3.1 THz). Our study presents a production methodology for high-performance, flexible THz absorbers, offering a straightforward and innovative solution for the rapid development of sophisticated, flexible THz absorbing materials.
三维(3D)多孔碳材料因其高电导率、强介电损耗和独特的微观结构,在制造柔性可调宽带吸收体方面具有巨大潜力。在此,我们介绍一种合成3D多孔石墨烯的创新方法,该方法结合了先进的调谐和封装工艺以增强其功能效果。通过调节飞秒(fs)激光与聚二甲基硅氧烷(PDMS)薄膜之间的热相互作用和非热相互作用,我们协同微调了3D多孔石墨烯的表面形态和晶格特性。这种方法使我们能够创建一种具有可定制特性的柔性太赫兹(THz)吸收体,在0.4 - 1.0太赫兹频谱中具有80% - 99%的可观吸光度范围,同时峰值反射损耗(RL)高达35.6 dB。此外,我们成功展示了在PDMS薄膜内光诱导生成3D多孔石墨烯,该薄膜既作为碳前驱体又作为保护层。这简化了传统的封装工艺。这些器件表现出高达41.6 dB的反射损耗和2.5太赫兹(0.6 - 3.1太赫兹)的吸收带宽。我们的研究提出了一种高性能柔性太赫兹吸收体的生产方法,为复杂柔性太赫兹吸收材料的快速发展提供了一种直接且创新的解决方案。