Suppr超能文献

通过对MIL-101-Cr进行烷基胺修饰来创建化学吸附位点以增强CO光还原活性

Creating Chemisorption Sites for Enhanced CO Photoreduction Activity through Alkylamine Modification of MIL-101-Cr.

作者信息

Xie Yue, Fang Zhibin, Li Lan, Yang Hongxun, Liu Tian-Fu

机构信息

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian , 350002 , P. R. China.

出版信息

ACS Appl Mater Interfaces. 2019 Jul 31;11(30):27017-27023. doi: 10.1021/acsami.9b09436. Epub 2019 Jul 17.

Abstract

The lower CO utilization and poor charge conductivities have limited the application of metal-organic frameworks (MOFs) in photocatalysis. In this work, different alkylamines [ethylenediamine (EN), diethylenetriamine (DETA), and triethylenetetramine (TETA)] were successfully introduced into MIL-101-Cr by postmodification and created abundant CO chemisorption sites in structures. Photocatalysis reaction showed that the alkylamine modification promoted the charge separation and migration rate and enhanced the reduction potential of the electron generated by the MOF photocatalyst. Among them, the EN-modified material exhibits the highest CO generation rate of 47.2 μmol·h·g with a high selectivity of 96.5%, much superior than the pristine MOFs MIL-101-Cr and MIL-101-SOH, as well as the DETA- and TETA-modified products, which can be ascribed to the abundant chemisorption sites for CO reactants and the optimized pore size in structures. The strategy of introduction of alkylamine groups as CO chemisorption sites has been demonstrated to be a new pathway for the design of efficient MOF catalysts for CO photoreduction.

摘要

较低的CO利用率和较差的电荷传导率限制了金属有机框架材料(MOFs)在光催化中的应用。在本工作中,通过后修饰成功地将不同的烷基胺[乙二胺(EN)、二乙烯三胺(DETA)和三乙烯四胺(TETA)]引入到MIL-101-Cr中,并在结构中产生了丰富的CO化学吸附位点。光催化反应表明,烷基胺修饰促进了电荷分离和迁移速率,并增强了MOF光催化剂产生的电子的还原电位。其中,EN修饰的材料表现出最高的CO生成速率,为47.2 μmol·h·g,选择性高达96.5%,远优于原始的MOFs材料MIL-101-Cr和MIL-101-SOH,以及DETA和TETA修饰的产物,这可归因于结构中丰富的CO反应物化学吸附位点和优化的孔径。引入烷基胺基团作为CO化学吸附位点的策略已被证明是设计用于CO光还原的高效MOF催化剂的新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验