Suppr超能文献

基于机器学习技术的疾病预测大数据预测分析模型的开发。

Development of Big Data Predictive Analytics Model for Disease Prediction using Machine learning Technique.

机构信息

Department of Computer Science and Engineering, Ramco Institute of Technology, Rajapalayam, Tamilnadu, India.

Department of Computer Science and Engineering, P.S.R Engineering College, Sivakasi, Tamilnadu, India.

出版信息

J Med Syst. 2019 Jul 5;43(8):272. doi: 10.1007/s10916-019-1398-y.

Abstract

Now days, health prediction in modern life becomesvery much essential. Big data analysis plays a crucial role to predict future status of healthand offerspreeminenthealth outcome to people. Heart disease is a prevalent disease cause's death around the world. A lotof research is going onpredictive analytics using machine learning techniques to reveal better decision making. Big data analysis fosters great opportunities to predict future health status from health parameters and provide best outcomes. WeusedBig Data Predictive Analytics Model for Disease Prediction using Naive Bayes Technique (BPA-NB). It providesprobabilistic classification based on Bayes' theorem with independence assumptions between the features. Naive Bayes approach suitable for huge data sets especially for bigdata. The Naive Bayes approachtrain the heart disease data taken from UCI machine learning repository. Then, it was making predictions on the test data to predict the classification. The results reveal that the proposed BPA-NB scheme providesbetter accuracy about 97.12% to predict the disease rate. The proposed BPA-NB scheme used Hadoop-spark as big data computing tool to obtain significant insight on healthcare data. The experiments are done to predict different patients' future health condition. It takes the training dataset to estimate the health parameters necessary for classification. The results show the early disease detection to figure out future health of patients.

摘要

如今,现代生活中的健康预测变得非常重要。大数据分析在预测未来健康状况和为人们提供卓越的健康结果方面起着至关重要的作用。心脏病是一种在全球范围内导致死亡的常见疾病。许多研究都在使用机器学习技术进行预测分析,以揭示更好的决策。大数据分析为从健康参数预测未来健康状况并提供最佳结果提供了巨大的机会。我们使用基于朴素贝叶斯技术(BPA-NB)的大数据预测分析模型进行疾病预测。它提供了基于贝叶斯定理的概率分类,假设特征之间相互独立。朴素贝叶斯方法适用于大型数据集,特别是大数据。朴素贝叶斯方法对从 UCI 机器学习存储库中获取的心脏病数据进行训练。然后,它对测试数据进行预测,以预测分类。结果表明,所提出的 BPA-NB 方案提供了更好的准确性,约为 97.12%,以预测疾病率。所提出的 BPA-NB 方案使用 Hadoop-spark 作为大数据计算工具,以获得有关医疗保健数据的重要见解。实验旨在预测不同患者的未来健康状况。它采用训练数据集来估计用于分类的健康参数。结果表明可以早期发现疾病,以了解患者的未来健康状况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验