Suppr超能文献

基于机器学习融合的智慧城市降雨预测系统。

Rainfall Prediction System Using Machine Learning Fusion for Smart Cities.

机构信息

Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.

School of Computer Science, National College of Business Administration and Economics, Lahore 54000, Pakistan.

出版信息

Sensors (Basel). 2022 May 4;22(9):3504. doi: 10.3390/s22093504.

Abstract

Precipitation in any form-such as rain, snow, and hail-can affect day-to-day outdoor activities. Rainfall prediction is one of the challenging tasks in weather forecasting process. Accurate rainfall prediction is now more difficult than before due to the extreme climate variations. Machine learning techniques can predict rainfall by extracting hidden patterns from historical weather data. Selection of an appropriate classification technique for prediction is a difficult job. This research proposes a novel real-time rainfall prediction system for smart cities using a machine learning fusion technique. The proposed framework uses four widely used supervised machine learning techniques, i.e., decision tree, Naïve Bayes, K-nearest neighbors, and support vector machines. For effective prediction of rainfall, the technique of fuzzy logic is incorporated in the framework to integrate the predictive accuracies of the machine learning techniques, also known as fusion. For prediction, 12 years of historical weather data (2005 to 2017) for the city of Lahore is considered. Pre-processing tasks such as cleaning and normalization were performed on the dataset before the classification process. The results reflect that the proposed machine learning fusion-based framework outperforms other models.

摘要

任何形式的降水——如雨、雪和冰雹——都会影响日常户外活动。降雨预测是天气预报过程中的一项具有挑战性的任务。由于极端的气候变化,准确的降雨预测现在比以往任何时候都更加困难。机器学习技术可以通过从历史天气数据中提取隐藏模式来预测降雨。选择合适的分类技术进行预测是一项困难的工作。本研究提出了一种使用机器学习融合技术的智能城市实时降雨预测系统。该框架使用了四种广泛使用的监督机器学习技术,即决策树、朴素贝叶斯、K 最近邻和支持向量机。为了有效地预测降雨,框架中结合了模糊逻辑技术,以融合机器学习技术的预测精度,也称为融合。在预测时,考虑了拉合尔市 12 年的历史天气数据(2005 年至 2017 年)。在分类过程之前,对数据集执行了清理和归一化等预处理任务。结果表明,基于机器学习融合的框架表现优于其他模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bc/9099780/c48111d11789/sensors-22-03504-g001.jpg

相似文献

1
Rainfall Prediction System Using Machine Learning Fusion for Smart Cities.
Sensors (Basel). 2022 May 4;22(9):3504. doi: 10.3390/s22093504.
2
Enhanced rainfall prediction performance via hybrid empirical-singular-wavelet-fuzzy approaches.
Environ Sci Pollut Res Int. 2023 Apr;30(20):58090-58108. doi: 10.1007/s11356-023-26598-x. Epub 2023 Mar 28.
3
A Comparative Study of Traffic Classification Techniques for Smart City Networks.
Sensors (Basel). 2021 Jul 8;21(14):4677. doi: 10.3390/s21144677.
4
Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study.
Traffic Inj Prev. 2020;21(3):201-208. doi: 10.1080/15389588.2020.1723794. Epub 2020 Mar 3.
5
Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
Environ Pollut. 2018 Oct;241:1115-1127. doi: 10.1016/j.envpol.2018.05.072. Epub 2018 Jun 23.
6
Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification.
Artif Intell Med. 2017 Sep;81:41-53. doi: 10.1016/j.artmed.2017.03.004. Epub 2017 Mar 18.
10
Occupational Injury Risk Mitigation: Machine Learning Approach and Feature Optimization for Smart Workplace Surveillance.
Int J Environ Res Public Health. 2022 Oct 27;19(21):13962. doi: 10.3390/ijerph192113962.

引用本文的文献

1
An enhanced adaptive dynamic metaheuristic optimization algorithm for rainfall prediction depends on long short-term memory.
PLoS One. 2025 Jun 2;20(6):e0317554. doi: 10.1371/journal.pone.0317554. eCollection 2025.
4
Network Meddling Detection Using Machine Learning Empowered with Blockchain Technology.
Sensors (Basel). 2022 Sep 7;22(18):6755. doi: 10.3390/s22186755.
5
A Review on Machine Learning Approaches in Identification of Pediatric Epilepsy.
SN Comput Sci. 2022;3(6):437. doi: 10.1007/s42979-022-01358-9. Epub 2022 Aug 10.
6
IoMT-Based Mitochondrial and Multifactorial Genetic Inheritance Disorder Prediction Using Machine Learning.
Comput Intell Neurosci. 2022 Jul 21;2022:2650742. doi: 10.1155/2022/2650742. eCollection 2022.

本文引用的文献

1
Variation of representative rainfall time series length for rainwater harvesting modelling in different climatic zones.
J Environ Manage. 2020 Sep 1;269:110731. doi: 10.1016/j.jenvman.2020.110731. Epub 2020 May 15.
2
Principles of data mining.
Drug Saf. 2007;30(7):621-2. doi: 10.2165/00002018-200730070-00010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验