School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China.
School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China.
J Colloid Interface Sci. 2019 Oct 15;554:39-47. doi: 10.1016/j.jcis.2019.06.098. Epub 2019 Jun 29.
The two dimensional (2D) lamellar structure materials with micron length of lateral can offer abundant reactive sites, high surface area and high flexibility for separating the photo-induced electron-hole pairs, and the obtained nanosheets possess tremendous potential to achieve efficient photocatalytic performance. Herein, we design and successfully synthesize 2D MOF-derived leaf-like structured CoS decorated with CdS photocatalyst by a facile method, which possesses a lateral size of 3-6 μm with the thickness of 130-160 nm. The maximum optical absorption wavelength of CoS/CdS extends remarkably from 570 nm to 720 nm in visible light region compared with pure CdS nanospheres, demonstrating that the CoS/CdS hybrid material has higher solar energy utilization efficiency. Benefited from the structural advantages and the improvement of the absorption region, the optimized CoS/CdS (0.2) exhibits superior hydrogen production performance, and the amount of H reaches 5892.6 μmol h g under continuous visible-light illumination. Notably, the result manifests over 6 times greater than the neat CdS nanoparticles. Above all, this work provides a remarkable stepping stone in rationally constructing 2D MOF-based composite materials for sustainable energy sources applied in the field of photocatalytic hydrogen evolution.
二维(2D)层状结构材料的横向长度为微米级,可以提供丰富的反应活性位、高表面积和高灵活性,用于分离光致电子-空穴对,所得到的纳米片具有实现高效光催化性能的巨大潜力。本文通过一种简便的方法设计并成功合成了二维 MOF 衍生的具有叶状结构的 CoS 修饰的 CdS 光催化剂,其横向尺寸为 3-6 μm,厚度为 130-160 nm。与纯 CdS 纳米球相比,CoS/CdS 杂化材料在可见光区域的最大光吸收波长从 570nm 显著扩展到 720nm,表明 CoS/CdS 杂化材料具有更高的太阳能利用效率。得益于结构优势和吸收区域的改善,优化后的 CoS/CdS(0.2)表现出优异的制氢性能,在连续可见光照射下,H 的量达到 5892.6 μmol h g。值得注意的是,这一结果比纯 CdS 纳米颗粒大 6 倍以上。总之,这项工作为合理构建用于光催化析氢领域的可持续能源的二维 MOF 基复合材料提供了一个显著的起点。