Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.
Cell. 2019 Jul 25;178(3):699-713.e19. doi: 10.1016/j.cell.2019.06.011. Epub 2019 Jul 4.
Accurate prediction of long-term outcomes remains a challenge in the care of cancer patients. Due to the difficulty of serial tumor sampling, previous prediction tools have focused on pretreatment factors. However, emerging non-invasive diagnostics have increased opportunities for serial tumor assessments. We describe the Continuous Individualized Risk Index (CIRI), a method to dynamically determine outcome probabilities for individual patients utilizing risk predictors acquired over time. Similar to "win probability" models in other fields, CIRI provides a real-time probability by integrating risk assessments throughout a patient's course. Applying CIRI to patients with diffuse large B cell lymphoma, we demonstrate improved outcome prediction compared to conventional risk models. We demonstrate CIRI's broader utility in analogous models of chronic lymphocytic leukemia and breast adenocarcinoma and perform a proof-of-concept analysis demonstrating how CIRI could be used to develop predictive biomarkers for therapy selection. We envision that dynamic risk assessment will facilitate personalized medicine and enable innovative therapeutic paradigms.
准确预测癌症患者的长期预后仍然是一个挑战。由于连续肿瘤采样的难度,以前的预测工具主要集中在预处理因素上。然而,新兴的非侵入性诊断技术为连续肿瘤评估提供了更多机会。我们描述了连续个体化风险指数(CIRI),这是一种利用随时间获得的风险预测因子来动态确定个体患者预后概率的方法。类似于其他领域的“获胜概率”模型,CIRI 通过整合患者病程中的风险评估来提供实时概率。将 CIRI 应用于弥漫性大 B 细胞淋巴瘤患者,我们证明了与传统风险模型相比,该方法可以改善预后预测。我们还证明了 CIRI 在慢性淋巴细胞白血病和乳腺腺癌的类似模型中的更广泛适用性,并进行了概念验证分析,展示了 CIRI 如何用于开发治疗选择的预测生物标志物。我们设想,动态风险评估将促进个性化医疗并实现创新的治疗模式。