Suppr超能文献

使用肿瘤标志物连续动态分析进行个体化预后预测。

Dynamic Risk Profiling Using Serial Tumor Biomarkers for Personalized Outcome Prediction.

机构信息

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

出版信息

Cell. 2019 Jul 25;178(3):699-713.e19. doi: 10.1016/j.cell.2019.06.011. Epub 2019 Jul 4.

Abstract

Accurate prediction of long-term outcomes remains a challenge in the care of cancer patients. Due to the difficulty of serial tumor sampling, previous prediction tools have focused on pretreatment factors. However, emerging non-invasive diagnostics have increased opportunities for serial tumor assessments. We describe the Continuous Individualized Risk Index (CIRI), a method to dynamically determine outcome probabilities for individual patients utilizing risk predictors acquired over time. Similar to "win probability" models in other fields, CIRI provides a real-time probability by integrating risk assessments throughout a patient's course. Applying CIRI to patients with diffuse large B cell lymphoma, we demonstrate improved outcome prediction compared to conventional risk models. We demonstrate CIRI's broader utility in analogous models of chronic lymphocytic leukemia and breast adenocarcinoma and perform a proof-of-concept analysis demonstrating how CIRI could be used to develop predictive biomarkers for therapy selection. We envision that dynamic risk assessment will facilitate personalized medicine and enable innovative therapeutic paradigms.

摘要

准确预测癌症患者的长期预后仍然是一个挑战。由于连续肿瘤采样的难度,以前的预测工具主要集中在预处理因素上。然而,新兴的非侵入性诊断技术为连续肿瘤评估提供了更多机会。我们描述了连续个体化风险指数(CIRI),这是一种利用随时间获得的风险预测因子来动态确定个体患者预后概率的方法。类似于其他领域的“获胜概率”模型,CIRI 通过整合患者病程中的风险评估来提供实时概率。将 CIRI 应用于弥漫性大 B 细胞淋巴瘤患者,我们证明了与传统风险模型相比,该方法可以改善预后预测。我们还证明了 CIRI 在慢性淋巴细胞白血病和乳腺腺癌的类似模型中的更广泛适用性,并进行了概念验证分析,展示了 CIRI 如何用于开发治疗选择的预测生物标志物。我们设想,动态风险评估将促进个性化医疗并实现创新的治疗模式。

相似文献

1
Dynamic Risk Profiling Using Serial Tumor Biomarkers for Personalized Outcome Prediction.
Cell. 2019 Jul 25;178(3):699-713.e19. doi: 10.1016/j.cell.2019.06.011. Epub 2019 Jul 4.
2
Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma.
J Clin Oncol. 2018 Oct 1;36(28):2845-2853. doi: 10.1200/JCO.2018.78.5246. Epub 2018 Aug 20.
3
Circulating tumor DNA: clinical roles in diffuse large B cell lymphoma.
Ann Hematol. 2019 Feb;98(2):255-269. doi: 10.1007/s00277-018-3529-9. Epub 2018 Oct 27.
4
Circulating tumor DNA-From bench to bedside.
Curr Probl Cancer. 2017 May-Jun;41(3):212-221. doi: 10.1016/j.currproblcancer.2017.02.005. Epub 2017 Mar 1.
7
Role of frontline autologous stem cell transplantation in young, high-risk diffuse large B-cell lymphoma patients.
Korean J Intern Med. 2015 May;30(3):362-71. doi: 10.3904/kjim.2015.30.3.362. Epub 2015 Apr 29.
8
Prognostic significance of Epstein-Barr virus DNA detection in pretreatment serum in diffuse large B-cell lymphoma.
Cancer Sci. 2015 Nov;106(11):1576-81. doi: 10.1111/cas.12812. Epub 2015 Oct 7.

引用本文的文献

1
Coupled SDE-ODE Modeling of Tumor-Immune Dynamics to Infer Biomarker Release.
bioRxiv. 2025 Aug 21:2025.08.15.670571. doi: 10.1101/2025.08.15.670571.
4
Circulating tumor DNA - from biology to potential clinical applications in diffuse large B-cell lymphomas.
Contemp Oncol (Pozn). 2025;29(2):150-158. doi: 10.5114/wo.2025.150452. Epub 2025 May 9.
5
Current AI technologies in cancer diagnostics and treatment.
Mol Cancer. 2025 Jun 2;24(1):159. doi: 10.1186/s12943-025-02369-9.
6
Response-guided first-line therapy and treatment of relapse in aggressive lymphoma: 10-year follow-up of the PETAL trial.
Blood Neoplasia. 2024 May 21;1(3):100018. doi: 10.1016/j.bneo.2024.100018. eCollection 2024 Sep.
7
Liquid Biopsy in B and T Cell Lymphomas: From Bench to Bedside.
Int J Mol Sci. 2025 May 19;26(10):4869. doi: 10.3390/ijms26104869.
8
Advancing Leukemia Management Through Liquid Biopsy: Insights into Biomarkers and Clinical Utility.
Cancers (Basel). 2025 Apr 25;17(9):1438. doi: 10.3390/cancers17091438.
9
Integrating ctDNA Analysis and Radiomics for Dynamic Risk Assessment in Localized Lung Cancer.
Cancer Discov. 2025 Aug 4;15(8):1609-1629. doi: 10.1158/2159-8290.CD-24-1704.
10
Individualized dynamic risk assessment and treatment selection for multiple myeloma.
Br J Cancer. 2025 Jun;132(10):922-936. doi: 10.1038/s41416-025-02987-6. Epub 2025 Apr 1.

本文引用的文献

1
Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma.
J Clin Oncol. 2018 Oct 1;36(28):2845-2853. doi: 10.1200/JCO.2018.78.5246. Epub 2018 Aug 20.
3
Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas (PETAL): A Multicenter, Randomized Phase III Trial.
J Clin Oncol. 2018 Jul 10;36(20):2024-2034. doi: 10.1200/JCO.2017.76.8093. Epub 2018 May 11.
4
Molecular Minimal Residual Disease in Acute Myeloid Leukemia.
N Engl J Med. 2018 Mar 29;378(13):1189-1199. doi: 10.1056/NEJMoa1716863.
5
Breast Cancer, Version 4.2017, NCCN Clinical Practice Guidelines in Oncology.
J Natl Compr Canc Netw. 2018 Mar;16(3):310-320. doi: 10.6004/jnccn.2018.0012.
8
Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling.
Cancer Discov. 2017 Dec;7(12):1394-1403. doi: 10.1158/2159-8290.CD-17-0716. Epub 2017 Sep 24.
9
The Search for Surrogate Endpoints in Trials in Diffuse Large B-Cell Lymphoma: The Surrogate Endpoints for Aggressive Lymphoma Project.
Oncologist. 2017 Dec;22(12):1415-1418. doi: 10.1634/theoncologist.2017-0177. Epub 2017 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验