Suppr超能文献

整合循环肿瘤DNA分析与影像组学用于局部肺癌的动态风险评估

Integrating ctDNA Analysis and Radiomics for Dynamic Risk Assessment in Localized Lung Cancer.

作者信息

Moding Everett J, Shahrokh Esfahani Mohammad, Jin Cheng, Hui Angela B, Nabet Barzin Y, Liu Yufei, Chabon Jacob J, Binkley Michael S, Kurtz David M, Hamilton Emily G, Chaudhuri Aadel A, Liu Chih Long, Li Zhe, Bonilla Rene F, Jiang Alice L, Lau Brianna C, Lopez Pablo, He Jianzhong, Qiao Yawei, Xu Ting, Yao Luyang, Gandhi Saumil, Liao Zhongxing, Das Millie, Ramchandran Kavitha J, Padda Sukhmani K, Neal Joel W, Wakelee Heather A, Gensheimer Michael F, Loo Billy W, Li Ruijiang, Lin Steven H, Alizadeh Ash A, Diehn Maximilian

机构信息

Department of Radiation Oncology, Stanford University, Stanford, California.

Stanford Cancer Institute, Stanford University, Stanford, California.

出版信息

Cancer Discov. 2025 Aug 4;15(8):1609-1629. doi: 10.1158/2159-8290.CD-24-1704.

Abstract

UNLABELLED

The complementarity and clinical utility of combining liquid biopsies and radiomic image analysis has not been demonstrated. ctDNA minimal residual disease after chemoradiotherapy (CRT) for non-small cell lung cancer (NSCLC) is highly prognostic, but on-treatment biomarkers are needed to enable response-adapted therapies. In this study, we analyzed 418 patients with NSCLC undergoing CRT to develop and validate a novel dynamic risk model that accurately predicts ultimate progression-free survival during treatment. We optimize tissue-free variant calling from plasma samples to facilitate ctDNA monitoring and demonstrate the importance of accounting for persistent clonal hematopoiesis variants. We show that mid-CRT ctDNA concentration is prognostic for disease progression and integrate additional pre-CRT risk factors, including radiomics, into a combined model that improves outcome prediction. Our results suggest that tumor features, radiomics, and mid-CRT ctDNA analysis are complementary and can identify patients at high and low risk of progression to potentially enable response-adapted therapies.

SIGNIFICANCE

This study demonstrates that combining tumor features, radiomics, and ctDNA analysis improves outcome prediction in NSCLC treated with CRT therapy. Our integrated model could enable personalized and response-adapted therapies to reduce toxicity and improve outcomes in patients. See related commentary by Anagnostou and Aggarwal, p. 1534.

摘要

未标注

液体活检与放射组学图像分析相结合的互补性和临床实用性尚未得到证实。非小细胞肺癌(NSCLC)放化疗(CRT)后的循环肿瘤DNA(ctDNA)微小残留病具有高度预后价值,但需要治疗期间生物标志物来实现适应性治疗。在本研究中,我们分析了418例接受CRT的NSCLC患者,以开发和验证一种新型动态风险模型,该模型可准确预测治疗期间的最终无进展生存期。我们优化了从血浆样本中进行无组织变异检测,以促进ctDNA监测,并证明了考虑持续性克隆造血变异的重要性。我们表明,CRT中期ctDNA浓度可预测疾病进展,并将包括放射组学在内的其他CRT前风险因素整合到一个联合模型中,以改善预后预测。我们的结果表明,肿瘤特征、放射组学和CRT中期ctDNA分析具有互补性,可识别进展风险高和低的患者,从而有可能实现适应性治疗。

意义

本研究表明,结合肿瘤特征、放射组学和ctDNA分析可改善接受CRT治疗的NSCLC患者的预后预测。我们的综合模型可实现个性化和适应性治疗,以降低毒性并改善患者预后。见Anagnostou和Aggarwal的相关评论,第1534页。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验