Suppr超能文献

脉动流对液流悬浮式血泵悬浮力的影响。

The Impact of Pulsatile Flow on Suspension Force for Hydrodynamically Levitated Blood Pump.

机构信息

School of Mechanical & Energy Engineering, Zhejiang University of Science & Technology, Hangzhou, China.

State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China.

出版信息

J Healthc Eng. 2019 Jun 3;2019:8065920. doi: 10.1155/2019/8065920. eCollection 2019.

Abstract

Hydrodynamically levitated rotary blood pumps (RBPs) with noncontact bearing are effective to enhance the blood compatibility. The spiral groove bearing (SGB) is one of the key components which offer the suspension force to the RBP. Current studies focus on the suspension performance of the SGB under continuous flow condition. However, the RBP shows pulsatile characteristics in the actual clinical application, which may affect the suspension performance of the SGB. In this paper, the impact of pulsatile flow upon the suspension force from the SGB is studied. A model of the SGB with a groove formed of wedge-shaped spirals is built. Then, the CFD calculation of the hydrodynamic force offered by designed SGB under simulated pulsatile flow is introduced to obtain the pulsatile performance of the suspension force. The proposed method was validated by experiments measuring the hydrodynamic force with different bearing gaps. The results show that the suspension force of the SGB under pulsate flow is the same as under steady flow with equivalent effective pressure. This paper provides a method for suspension performance test of the SGB.

摘要

液力悬浮式旋转血泵(RBPs)采用无接触式轴承,可有效提高血液相容性。螺旋槽轴承(SGB)是为 RBP 提供悬浮力的关键部件之一。目前的研究主要集中在连续流动条件下 SGB 的悬浮性能上。然而,在实际的临床应用中,RBP 表现出脉动特性,这可能会影响 SGB 的悬浮性能。本文研究了脉动流对 SGB 悬浮力的影响。建立了一个楔形螺旋槽形成的 SGB 模型。然后,介绍了在模拟脉动流下设计的 SGB 提供的流体动力的 CFD 计算,以获得悬浮力的脉动性能。通过不同轴承间隙下测量的流体动力实验对提出的方法进行了验证。结果表明,SGB 在脉动流下的悬浮力与等效有效压力下的稳流相同。本文为 SGB 的悬浮性能测试提供了一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/740a/6589295/b3ed22ef55f6/JHE2019-8065920.001.jpg

相似文献

1
The Impact of Pulsatile Flow on Suspension Force for Hydrodynamically Levitated Blood Pump.
J Healthc Eng. 2019 Jun 3;2019:8065920. doi: 10.1155/2019/8065920. eCollection 2019.
2
A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump.
Artif Organs. 2012 Aug;36(8):739-46. doi: 10.1111/j.1525-1594.2012.01467.x. Epub 2012 Jul 2.
3
The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump.
Artif Organs. 2013 Oct;37(10):866-74. doi: 10.1111/aor.12081. Epub 2013 May 2.
4
Spiral groove bearing design for improving plasma skimming in rotary blood pumps.
J Artif Organs. 2024 Sep;27(3):212-221. doi: 10.1007/s10047-023-01422-y. Epub 2023 Dec 28.
5
Impact of gap size and groove design of hydrodynamic bearing on plasma skimming effect for use in rotary blood pump.
J Artif Organs. 2022 Sep;25(3):195-203. doi: 10.1007/s10047-021-01308-x. Epub 2022 Jan 28.
6
Plasma Skimming in a Spiral Groove Bearing of a Centrifugal Blood Pump.
Artif Organs. 2016 Sep;40(9):856-66. doi: 10.1111/aor.12799.
7
Improvement of hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing a shroud size.
J Artif Organs. 2021 Jun;24(2):157-163. doi: 10.1007/s10047-020-01240-6. Epub 2021 Jan 11.
8
Evaluation of erythrocyte flow at a bearing gap in a hydrodynamically levitated centrifugal blood pump.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:270-3. doi: 10.1109/EMBC.2015.7318352.

本文引用的文献

1
Association of Pulsatility with Gastrointestinal Bleeding in a Cohort of HeartMate II Recipients.
ASAIO J. 2018 Jul/Aug;64(4):472-479. doi: 10.1097/MAT.0000000000000766.
3
Artificial hearts-recent progress: republication of the article published in the Japanese Journal of Artificial Organs.
J Artif Organs. 2017 Sep;20(3):187-193. doi: 10.1007/s10047-017-0969-2. Epub 2017 Jun 15.
5
The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump.
Artif Organs. 2013 Oct;37(10):866-74. doi: 10.1111/aor.12081. Epub 2013 May 2.
6
Cell exclusion in couette flow: evaluation through flow visualization and mechanical forces.
Artif Organs. 2013 Mar;37(3):267-75. doi: 10.1111/j.1525-1594.2012.01561.x. Epub 2013 Jan 29.
7
A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump.
Artif Organs. 2012 Aug;36(8):739-46. doi: 10.1111/j.1525-1594.2012.01467.x. Epub 2012 Jul 2.
8
A review of clinical ventricular assist devices.
Med Eng Phys. 2011 Nov;33(9):1041-7. doi: 10.1016/j.medengphy.2011.04.010. Epub 2011 Jun 12.
9
Hemocompatibility of a hydrodynamic levitation centrifugal blood pump.
J Artif Organs. 2007;10(2):71-6. doi: 10.1007/s10047-006-0370-z. Epub 2007 Jun 20.
10
Numerical and in vitro investigations of pressure rise in a new hydrodynamic blood bearing.
Artif Organs. 2007 Jun;31(6):434-40. doi: 10.1111/j.1525-1594.2007.00406.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验