Immunological Diagnostics, Children's Cancer Research Institute, Vienna, Austria.
Computer Vision Lab, Faculty of Informatics, Technical University of Vienna, Vienna, Austria.
Cytometry A. 2019 Sep;95(9):966-975. doi: 10.1002/cyto.a.23852. Epub 2019 Jul 7.
Minimal residual disease (MRD) as measured by multiparameter flow cytometry (FCM) is an independent and strong prognostic factor in B-cell acute lymphoblastic leukemia (B-ALL). However, reliable flow cytometric detection of MRD strongly depends on operator skills and expert knowledge. Hence, an objective, automated tool for reliable FCM-MRD quantification, able to overcome the technical diversity and analytical subjectivity, would be most helpful. We developed a supervised machine learning approach using a combination of multiple Gaussian Mixture Models (GMM) as a parametric density model. The approach was used for finding the weights of a linear combination of multiple GMMs to represent new, "unseen" samples by an interpolation of stored samples. The experimental data set contained FCM-MRD data of 337 bone marrow samples collected at day 15 of induction therapy in three different laboratories from pediatric patients with B-ALL for which accurate, expert-set gates existed. We compared MRD quantification by our proposed GMM approach to operator assessments, its performance on data from different laboratories, as well as to other state-of-the-art automated read-out methods. Our proposed GMM-combination approach proved superior over support vector machines, deep neural networks, and a single GMM approach in terms of precision and average F -scores. A high correlation of expert operator-based and automated MRD assessment was achieved with reliable automated MRD quantification (F -scores >0.5 in more than 95% of samples) in the clinically relevant range. Although best performance was found, if test and training samples were from the same system (i.e., flow cytometer and staining panel; lowest median F -score 0.92), cross-system performance remained high with a median F -score above 0.85 in all settings. In conclusion, our proposed automated approach could potentially be used to assess FCM-MRD in B-ALL in an objective and standardized manner across different laboratories. © 2019 International Society for Advancement of Cytometry.
微小残留病(MRD)的检测方法有很多种,其中最常用的是流式细胞术(FCM)。MRD 是 B 细胞急性淋巴细胞白血病(B-ALL)的一个独立的、强有力的预后因素。然而,可靠的 FCM-MRD 检测需要依赖于操作人员的技能和专业知识。因此,一种客观的、自动化的工具,用于可靠的 FCM-MRD 定量分析,能够克服技术多样性和分析主观性,将是非常有帮助的。我们开发了一种基于监督机器学习的方法,使用多个高斯混合模型(GMM)的组合作为参数密度模型。该方法用于找到多个 GMM 的线性组合的权重,以通过对存储样本的插值来表示新的、“未见过”的样本。实验数据集包含 337 个骨髓样本的 FCM-MRD 数据,这些样本是在诱导治疗的第 15 天,从三个不同实验室的儿科 B-ALL 患者中采集的,这些患者的样本存在准确的专家设定门。我们将所提出的 GMM 方法与操作员评估、其在不同实验室数据上的性能以及其他最先进的自动读取方法进行了比较。与支持向量机、深度神经网络和单个 GMM 方法相比,我们提出的 GMM 组合方法在精度和平均 F 分数方面表现更为优越。在临床相关范围内,实现了专家操作员评估和自动 MRD 评估之间的高度相关性,并且能够进行可靠的自动 MRD 定量分析(在超过 95%的样本中 F 分数>0.5)。虽然在测试和训练样本来自同一系统(即流式细胞仪和染色面板;最低中位数 F 分数 0.92)时达到了最佳性能,但在所有设置中,跨系统性能仍然很高,中位数 F 分数均高于 0.85。总之,我们提出的自动方法有可能在不同的实验室中以客观和标准化的方式用于评估 B-ALL 中的 FCM-MRD。 2019 年国际细胞分析促进协会。