Suppr超能文献

ANPELA:基于流式细胞术的单细胞蛋白质组学的显著增强定量工具。

ANPELA: Significantly Enhanced Quantification Tool for Cytometry-Based Single-Cell Proteomics.

机构信息

College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China.

出版信息

Adv Sci (Weinh). 2023 May;10(15):e2207061. doi: 10.1002/advs.202207061. Epub 2023 Mar 22.

Abstract

ANPELA is widely used for quantifying traditional bulk proteomic data. Recently, there is a clear shift from bulk proteomics to the single-cell ones (SCP), for which powerful cytometry techniques demonstrate the fantastic capacity of capturing cellular heterogeneity that is completely overlooked by traditional bulk profiling. However, the in-depth and high-quality quantification of SCP data is still challenging and severely affected by the large numbers of quantification workflows and extreme performance dependence on the studied datasets. In other words, the proper selection of well-performing workflow(s) for any studied dataset is elusory, and it is urgently needed to have a significantly enhanced and accelerated tool to address this issue. However, no such tool is developed yet. Herein, ANPELA is therefore updated to its 2.0 version (https://idrblab.org/anpela/), which is unique in providing the most comprehensive set of quantification alternatives (>1000 workflows) among all existing tools, enabling systematic performance evaluation from multiple perspectives based on machine learning, and identifying the optimal workflow(s) using overall performance ranking together with the parallel computation. Extensive validation on different benchmark datasets and representative application scenarios suggest the great application potential of ANPELA in current SCP research for gaining more accurate and reliable biological insights.

摘要

ANPELA 被广泛用于定量传统的整体蛋白质组学数据。最近,人们明显从整体蛋白质组学转向单细胞蛋白质组学(SCP),强大的细胞仪技术展示了捕捉细胞异质性的惊人能力,而传统的整体分析完全忽略了这种异质性。然而,对 SCP 数据的深入和高质量定量仍然具有挑战性,并且严重依赖于大量的定量工作流程,以及对研究数据集的极端性能依赖。换句话说,为任何研究数据集选择表现良好的工作流程都是难以捉摸的,迫切需要一个显著增强和加速的工具来解决这个问题。然而,目前还没有这样的工具。因此,ANPELA 被更新到 2.0 版本(https://idrblab.org/anpela/),它在所有现有工具中提供了最全面的定量选择(>1000 种工作流程),能够基于机器学习从多个角度进行系统性能评估,并使用整体性能排名和并行计算来确定最佳工作流程。在不同的基准数据集和代表性应用场景上的广泛验证表明,ANPELA 在当前的 SCP 研究中具有很大的应用潜力,可以获得更准确和可靠的生物学见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/597a/10214264/e1f4547bacd0/ADVS-10-2207061-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验