Suppr超能文献

使用viSNE检测B淋巴细胞白血病中的微小残留病。

Detection of minimal residual disease in B lymphoblastic leukemia using viSNE.

作者信息

DiGiuseppe Joseph A, Tadmor Michelle D, Pe'er Dana

机构信息

Department of Pathology & Laboratory Medicine, Hartford Hospital, Hartford, Connecticut.

Department of Biological Sciences, Columbia University, New York, New York.

出版信息

Cytometry B Clin Cytom. 2015 Sep-Oct;88(5):294-304. doi: 10.1002/cyto.b.21252. Epub 2015 Jun 2.

Abstract

BACKGROUND

Minimal residual disease (MRD) following treatment is a robust prognostic marker in B lymphoblastic leukemia. However, the detection of MRD by flow cytometric immunophenotyping is technically challenging, and an automated method to detect MRD is therefore desirable. viSNE, a recently developed computational tool based on the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, has been shown to be capable of detecting synthetic "MRD-like" populations of leukemic cells created in vitro, but whether viSNE can facilitate the immunophenotypic detection of MRD in clinical samples has not been evaluated.

METHODS

We applied viSNE retrospectively to 8-color flow cytometric immunophenotyping data from normal bone marrow samples, and samples from B lymphoblastic leukemia patients with or without suspected MRD on the basis of conventional manual gating.

RESULTS

In each of 14 bone marrow specimens containing MRD or suspected MRD, viSNE identified a putative MRD population; an abnormal composite immunophenotype was confirmed for the putative MRD in each case. MRD populations were not identified by viSNE in control bone marrow samples from patients with increased normal B-cell precursors, or in post-treatment samples from B lymphoblastic leukemia patients who did not have detectable MRD by manual gating.

CONCLUSION

viSNE shows promise as an automated method to facilitate immunophenotypic MRD detection in patients treated for B lymphoblastic leukemia.

摘要

背景

治疗后的微小残留病(MRD)是B淋巴细胞白血病中一种可靠的预后标志物。然而,通过流式细胞术免疫表型分析检测MRD在技术上具有挑战性,因此需要一种自动化的方法来检测MRD。viSNE是一种最近基于t分布随机邻域嵌入(t-SNE)算法开发的计算工具,已被证明能够检测体外创建的白血病细胞的合成“MRD样”群体,但viSNE是否能促进临床样本中MRD的免疫表型检测尚未得到评估。

方法

我们回顾性地将viSNE应用于正常骨髓样本以及基于传统手工设门法判断有或无疑似MRD的B淋巴细胞白血病患者样本的8色流式细胞术免疫表型分析数据。

结果

在14个含有MRD或疑似MRD的骨髓标本中,viSNE均识别出一个假定的MRD群体;在每种情况下,均证实该假定的MRD具有异常的复合免疫表型。在正常B细胞前体增加的患者的对照骨髓样本中,或在经手工设门法未检测到MRD的B淋巴细胞白血病患者的治疗后样本中,viSNE未识别出MRD群体。

结论

viSNE作为一种自动化方法,有望促进接受B淋巴细胞白血病治疗患者的免疫表型MRD检测。

相似文献

1
Detection of minimal residual disease in B lymphoblastic leukemia using viSNE.
Cytometry B Clin Cytom. 2015 Sep-Oct;88(5):294-304. doi: 10.1002/cyto.b.21252. Epub 2015 Jun 2.
6
Automated Flow Cytometric MRD Assessment in Childhood Acute B- Lymphoblastic Leukemia Using Supervised Machine Learning.
Cytometry A. 2019 Sep;95(9):966-975. doi: 10.1002/cyto.a.23852. Epub 2019 Jul 7.

引用本文的文献

1
The Flow Cytometric Evaluation of B- and T-Lymphoblastic Leukemia/Lymphoma.
Cancers (Basel). 2025 Mar 26;17(7):1111. doi: 10.3390/cancers17071111.
6
Specific Immune Response and Cytokine Production in CD70 Deficiency.
Front Pediatr. 2021 Apr 30;9:615724. doi: 10.3389/fped.2021.615724. eCollection 2021.
10
Mass Cytometry for the Assessment of Immune Reconstitution After Hematopoietic Stem Cell Transplantation.
Front Immunol. 2018 Jul 26;9:1672. doi: 10.3389/fimmu.2018.01672. eCollection 2018.

本文引用的文献

2
Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry.
Cytometry B Clin Cytom. 2016 Jan;90(1):47-53. doi: 10.1002/cyto.b.21239. Epub 2015 May 29.
3
Detection of minimal residual disease in pediatric acute lymphoblastic leukemia.
Cytometry B Clin Cytom. 2013 Nov-Dec;84(6):359-69. doi: 10.1002/cyto.b.21101. Epub 2013 Jun 26.
5
viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.
Nat Biotechnol. 2013 Jun;31(6):545-52. doi: 10.1038/nbt.2594. Epub 2013 May 19.
6
Critical assessment of automated flow cytometry data analysis techniques.
Nat Methods. 2013 Mar;10(3):228-38. doi: 10.1038/nmeth.2365. Epub 2013 Feb 10.
7
Cytometry: today's technology and tomorrow's horizons.
Methods. 2012 Jul;57(3):251-8. doi: 10.1016/j.ymeth.2012.02.009. Epub 2012 Feb 25.
8
Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data.
Cytometry A. 2012 Jan;81(1):25-34. doi: 10.1002/cyto.a.21148. Epub 2011 Oct 11.
10
New markers for minimal residual disease detection in acute lymphoblastic leukemia.
Blood. 2011 Jun 9;117(23):6267-76. doi: 10.1182/blood-2010-12-324004. Epub 2011 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验