Department of Earth, Ocean & Ecological Sciences, University of Liverpool, Liverpool, UK.
Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
Glob Chang Biol. 2019 Oct;25(10):3406-3423. doi: 10.1111/gcb.14711. Epub 2019 Jul 8.
Fire is a key driver in savannah systems and widely used as a land management tool. Intensifying human land uses are leading to rapid changes in the fire regimes, with consequences for ecosystem functioning and composition. We undertake a novel analysis describing spatial patterns in the fire regime of the Serengeti-Mara ecosystem, document multidecadal temporal changes and investigate the factors underlying these patterns. We used MODIS active fire and burned area products from 2001 to 2014 to identify individual fires; summarizing four characteristics for each detected fire: size, ignition date, time since last fire and radiative power. Using satellite imagery, we estimated the rate of change in the density of livestock bomas as a proxy for livestock density. We used these metrics to model drivers of variation in the four fire characteristics, as well as total number of fires and total area burned. Fires in the Serengeti-Mara show high spatial variability-with number of fires and ignition date mirroring mean annual precipitation. The short-term effect of rainfall decreases fire size and intensity but cumulative rainfall over several years leads to increased standing grass biomass and fuel loads, and, therefore, in larger and hotter fires. Our study reveals dramatic changes over time, with a reduction in total number of fires and total area burned, to the point where some areas now experience virtually no fire. We suggest that increasing livestock numbers are driving this decline, presumably by inhibiting fire spread. These temporal patterns are part of a global decline in total area burned, especially in savannahs, and we caution that ecosystem functioning may have been compromised. Land managers and policy formulators need to factor in rapid fire regime modifications to achieve management objectives and maintain the ecological function of savannah ecosystems.
火是稀树草原系统的关键驱动因素,广泛用作土地管理工具。人类对土地的利用不断加强,导致火灾发生频率迅速变化,对生态系统功能和组成产生影响。我们进行了一项新颖的分析,描述了塞伦盖蒂-马拉开波生态系统火灾情况的空间模式,记录了多十年的时间变化,并调查了这些模式背后的因素。我们使用 MODIS 主动火灾和燃烧面积产品(2001 年至 2014 年)来识别单个火灾;总结了每个检测到的火灾的四个特征:大小、点火日期、上次火灾后的时间和辐射功率。利用卫星图像,我们估算了牲畜围场密度的变化率,作为牲畜密度的替代指标。我们使用这些指标来模拟四个火灾特征变化的驱动因素,以及火灾总数和总燃烧面积。塞伦盖蒂-马拉开波的火灾具有很高的空间变异性——火灾数量和点火日期与年平均降水量相吻合。降雨的短期影响会降低火灾的规模和强度,但多年的累积降雨会导致生长中的草生物量和燃料负荷增加,从而导致更大、更热的火灾。我们的研究揭示了随着时间的推移发生的剧烈变化,火灾总数和总燃烧面积减少,以至于一些地区现在几乎没有火灾。我们认为,牲畜数量的增加是导致这种下降的原因,可能是因为它们抑制了火势的蔓延。这些时间模式是全球总燃烧面积下降的一部分,特别是在稀树草原地区,我们警告说,生态系统功能可能已经受到损害。土地管理者和政策制定者需要考虑到火灾发生频率的迅速变化,以实现管理目标并维持稀树草原生态系统的生态功能。