Suppr超能文献

通过计算来重新设计蛋白质结构以提高其溶解性。

Computational re-design of protein structures to improve solubility.

机构信息

Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona , Barcelona , Spain.

出版信息

Expert Opin Drug Discov. 2019 Oct;14(10):1077-1088. doi: 10.1080/17460441.2019.1637413. Epub 2019 Jul 8.

Abstract

: The rapid development of protein therapeutics is providing life-saving therapies for a wide range of human diseases. However, degradation reactions limit the quality and performance of these protein-based drugs. Among them, protein aggregation is the most common and one of the most challenging to prevent. Aggregation impacts biopharmaceutical development at every stage, from discovery to production and storage. In addition, regulators are highly concerned about the impact of protein aggregates on drug product safety. : Herein, the authors review existing protein aggregation prediction approaches, with a special focus on four recently developed algorithms aimed to predict and improve solubility using three-dimensional protein coordinates: SAP, CamSol, Solubis and Aggrescan3D. Furthermore, they illustrate their potential to assist the design of solubility-improved proteins with a number of examples. : Aggregation of protein-based drugs is, traditionally, addressed via wet lab experiments, using trial and error approaches that are expensive, difficult to perform and time-consuming. The structure-based methods we describe here can predict accurately aggregation propensities, allowing researchers to work with pre-selected, well-behaved, protein candidates. These methods should contribute to the reduction of the time to the marketplace along with industrial costs and improve the safety of future therapeutic proteins.

摘要

: 蛋白质治疗学的快速发展为多种人类疾病提供了救命疗法。然而,降解反应限制了这些基于蛋白质的药物的质量和性能。其中,蛋白质聚集是最常见的,也是最难预防的问题之一。聚集在从发现到生产和储存的各个阶段都影响着生物制药的发展。此外,监管机构非常关注蛋白质聚集体对药物产品安全性的影响。 : 本文作者综述了现有的蛋白质聚集预测方法,特别关注了最近开发的四种旨在使用三维蛋白质坐标预测和改善溶解度的算法:SAP、CamSol、Solubis 和 Aggrescan3D。此外,作者通过一些实例说明了它们在协助设计溶解度改善的蛋白质方面的潜力。 : 传统上,蛋白质药物的聚集问题是通过湿实验室实验来解决的,采用的是昂贵、难以实施且耗时的试错方法。我们在这里描述的基于结构的方法可以准确预测聚集倾向,使研究人员能够预先选择表现良好的蛋白质候选物。这些方法应该有助于缩短进入市场的时间、降低工业成本,并提高未来治疗性蛋白质的安全性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验