Suppr超能文献

通过电转法利用CRISPR/Cas9核糖核蛋白介导的精确基因编辑

CRISPR/Cas9 Ribonucleoprotein-mediated Precise Gene Editing by Tube Electroporation.

作者信息

Ma Linyuan, Jang Lydia, Chen Jian, Song Jun, Yang Dongshan, Zhang Jifeng, Chen Y Eugene, Xu Jie

机构信息

Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan Medical Center.

Celetrix LLC.

出版信息

J Vis Exp. 2019 Jun 20(148). doi: 10.3791/59512.

Abstract

Gene editing nucleases, represented by CRISPR-associated protein 9 (Cas9), are becoming mainstream tools in biomedical research. Successful delivery of CRISPR/Cas9 elements into the target cells by transfection is a prerequisite for efficient gene editing. This protocol demonstrates that tube electroporation (TE) machine-mediated delivery of CRISPR/Cas9 ribonucleoprotein (RNP), along with single-stranded oligodeoxynucleotide (ssODN) donor templates to different types of mammalian cells, leads to robust precise gene editing events. First, TE was applied to deliver CRISPR/Cas9 RNP and ssODNs to induce disease-causing mutations in the interleukin 2 receptor subunit gamma (IL2RG) gene and sepiapterin reductase (SPR) gene in rabbit fibroblast cells. Precise mutation rates of 3.57%-20% were achieved as determined by bacterial TA cloning sequencing. The same strategy was then used in human iPSCs on several clinically relevant genes including epidermal growth factor receptor (EGFR), myosin binding protein C, cardiac (Mybpc3), and hemoglobin subunit beta (HBB). Consistently, highly precise mutation rates were achieved (11.65%-37.92%) as determined by deep sequencing (DeepSeq). The present work demonstrates that tube electroporation of CRISPR/Cas9 RNP represents an efficient transfection protocol for gene editing in mammalian cells.

摘要

以CRISPR相关蛋白9(Cas9)为代表的基因编辑核酸酶正成为生物医学研究中的主流工具。通过转染将CRISPR/Cas9元件成功递送至靶细胞是高效基因编辑的先决条件。本方案表明,管电穿孔(TE)机器介导的CRISPR/Cas9核糖核蛋白(RNP)与单链寡脱氧核苷酸(ssODN)供体模板一起递送至不同类型的哺乳动物细胞,可导致强大而精确的基因编辑事件。首先,应用TE将CRISPR/Cas9 RNP和ssODN递送至兔成纤维细胞中的白细胞介素2受体亚基γ(IL2RG)基因和蝶呤还原酶(SPR)基因,以诱导致病突变。通过细菌TA克隆测序确定,精确突变率达到3.57%-20%。然后,将相同策略应用于人类诱导多能干细胞中的几个临床相关基因,包括表皮生长因子受体(EGFR)、心肌肌球蛋白结合蛋白C(Mybpc3)和血红蛋白亚基β(HBB)。同样,通过深度测序(DeepSeq)确定,实现了高度精确的突变率(11.65%-37.92%)。目前的工作表明,CRISPR/Cas9 RNP的管电穿孔代表了一种用于哺乳动物细胞基因编辑的高效转染方案。

相似文献

3
Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes.
J Biol Chem. 2016 Jul 8;291(28):14457-67. doi: 10.1074/jbc.M116.733154. Epub 2016 May 5.
4
Genome editing via delivery of Cas9 ribonucleoprotein.
Methods. 2017 May 15;121-122:9-15. doi: 10.1016/j.ymeth.2017.04.003. Epub 2017 Apr 12.
5
An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes.
PLoS One. 2018 May 3;13(5):e0196891. doi: 10.1371/journal.pone.0196891. eCollection 2018.
6
Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
mSphere. 2018 Jun 13;3(3). doi: 10.1128/mSphereDirect.00208-18. Print 2018 Jun 27.
9
Co-targeting strategy for precise, scarless gene editing with CRISPR/Cas9 and donor ssODNs in Chlamydomonas.
Plant Physiol. 2021 Dec 4;187(4):2637-2655. doi: 10.1093/plphys/kiab418.

引用本文的文献

1
Exploring non-viral methods for the delivery of CRISPR-Cas ribonucleoprotein to hematopoietic stem cells.
Stem Cell Res Ther. 2024 Jul 29;15(1):233. doi: 10.1186/s13287-024-03848-4.
3
Transdermal Delivery Systems for Biomolecules.
J Pharm Innov. 2022;17(2):319-332. doi: 10.1007/s12247-020-09525-2. Epub 2021 Jan 6.
4
Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing.
Theranostics. 2021 Jan 1;11(2):614-648. doi: 10.7150/thno.47007. eCollection 2021.
5
CRISPR/Cas9-Mediated TERT Disruption in Cancer Cells.
Int J Mol Sci. 2020 Jan 19;21(2):653. doi: 10.3390/ijms21020653.

本文引用的文献

3
Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):4903-4908. doi: 10.1073/pnas.1712963115. Epub 2018 Apr 23.
4
Bacterial and Infections in the Lungs of Gene-Knockout Rabbits with Severe Combined Immunodeficiency.
Front Immunol. 2018 Mar 9;9:429. doi: 10.3389/fimmu.2018.00429. eCollection 2018.
6
Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles.
ACS Nano. 2018 Feb 27;12(2):994-1005. doi: 10.1021/acsnano.7b07874. Epub 2018 Jan 9.
7
Production of immunodeficient rabbits by multiplex embryo transfer and multiplex gene targeting.
Sci Rep. 2017 Sep 22;7(1):12202. doi: 10.1038/s41598-017-12201-0.
8
Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma.
Biomaterials. 2017 Dec;147:68-85. doi: 10.1016/j.biomaterials.2017.09.015. Epub 2017 Sep 13.
9
Correction of a pathogenic gene mutation in human embryos.
Nature. 2017 Aug 24;548(7668):413-419. doi: 10.1038/nature23305. Epub 2017 Aug 2.
10
Most T790M mutations are present on the same EGFR allele as activating mutations in patients with non-small cell lung cancer.
Lung Cancer. 2017 Jun;108:75-82. doi: 10.1016/j.lungcan.2017.02.019. Epub 2017 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验