Department of Biomedical Engineering, The City College of New York, CUNY, New York, New York.
Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York.
Biotechnol Bioeng. 2019 Oct;116(10):2730-2741. doi: 10.1002/bit.27104. Epub 2019 Jul 23.
It is widely believed that the differentiation of embryonic stem cells (ESCs) into viable endothelial cells (ECs) for use in vascular tissue engineering can be enhanced by mechanical forces. In our previous work, we reported that shear stress enhanced important EC functional genes on a CD31 /CD45 cell population derived from mouse ESC committed to the EC lineage. In the present study, in contrast to the effects of shear stress on this cell population, we observed that cyclic strain significantly reduced the expression of EC-specific marker genes (vWF, VE-cadherin, and PECAM-1), tight junction protein genes (ZO-1, OCLD, and CLD5), and vasoactive genes (eNOS and ET1), while it did not alter the expression of COX2. Taken together, these studies indicate that only shear stress, not cyclic strain, is a useful mechanical stimulus for enhancing the properties of CD31 /CD45 cells for use as EC in vascular tissue engineering. To begin examining the mechanisms controlling cyclic strain-induced suppression of gene expression in CD31 /CD45 cells, we depleted the heparan sulfate (HS) component of the glycocalyx, blocked integrins, and silenced the HS proteoglycan syndecan-4 in separate experiments. All of these treatments resulted in the reversal of cyclic strain-induced gene suppression. The current study and our previous work provide a deeper understanding of the mechanisms that balance the influence of cyclic strain and shear stress in endothelial cells.
人们普遍认为,机械力可以增强胚胎干细胞(ESCs)向具有活力的内皮细胞(ECs)的分化,从而用于血管组织工程。在我们之前的工作中,我们报道了切应力增强了源自鼠 ESC 的 CD31/CD45 细胞群向 EC 谱系分化的重要 EC 功能基因的表达。在本研究中,与切应力对该细胞群的影响相反,我们观察到循环应变显著降低了 EC 特异性标记基因(vWF、VE-cadherin 和 PECAM-1)、紧密连接蛋白基因(ZO-1、OCLD 和 CLD5)和血管活性基因(eNOS 和 ET1)的表达,而 COX2 的表达没有改变。总之,这些研究表明,只有切应力而不是循环应变是增强 CD31/CD45 细胞作为血管组织工程中 EC 特性的有用机械刺激。为了开始研究控制 CD31/CD45 细胞中循环应变诱导的基因表达抑制的机制,我们在单独的实验中耗尽了糖萼的硫酸乙酰肝素(HS)成分、阻断整合素和沉默 HS 蛋白聚糖 syndecan-4。所有这些处理都导致了循环应变诱导的基因抑制的逆转。本研究和我们之前的工作提供了对平衡内皮细胞中环流应变和切应力影响的机制的更深入理解。