Conangla Gerard P, Ricci Francesco, Cuairan Marc T, Schell Andreas W, Meyer Nadine, Quidant Romain
ICFO Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain.
Quantum Optical Technology Group, Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic.
Phys Rev Lett. 2019 Jun 7;122(22):223602. doi: 10.1103/PhysRevLett.122.223602.
We use an optimal control protocol to cool one mode of the center-of-mass motion of an optically levitated nanoparticle. The feedback technique relies on exerting a Coulomb force on a charged particle with a pair of electrodes and follows the control law of a linear quadratic regulator, whose gains are optimized by a machine learning algorithm in under 5 s. With a simpler and more robust setup than optical feedback schemes, we achieve a minimum center-of-mass temperature of 5 mK at 3×10^{-7} mbar and transients 10-600 times faster than cold damping. This cooling technique can be easily extended to 3D cooling and is particularly relevant for studies demanding high repetition rates and force sensing experiments with levitated objects.
我们使用一种最优控制协议来冷却光悬浮纳米颗粒质心运动的一个模式。反馈技术依靠一对电极对带电粒子施加库仑力,并遵循线性二次调节器的控制律,其增益通过机器学习算法在5秒内得到优化。与光学反馈方案相比,我们的设置更简单、更稳健,在3×10⁻⁷毫巴的压力下实现了5毫开尔文的最低质心温度,且瞬态过程比冷阻尼快10到600倍。这种冷却技术可以很容易地扩展到三维冷却,对于要求高重复率的研究以及悬浮物体的力传感实验尤其适用。